Home Техника Кеш памет

Кеш памет



Introduction

Cachereferstothememorythatcanexchangehigh-speeddata.ItexchangesdatabeforethememoryandCPU,sothespeedisveryfast.L1Cache(firstlevelcache)isthefirstlevelofCPUcache.Thecapacityandstructureofthebuilt-inL1cachehaveagreaterimpactontheperformanceoftheCPU,butthecachememoryiscomposedofstaticRAM,andthestructureismorecomplex.WhentheCPUdieareacannotbetoolarge,thecapacityoftheL1cacheisnotItmaybetoobig.Generally,thecapacityofL1cacheisusually32-256KB.L2Cache(second-levelcache)isthesecond-levelcacheoftheCPU,dividedintointernalandexternalchips.Theinternalchip'sL2cacherunsatthesamespeedasthemainfrequency,whiletheexternalL2cacheisonlyhalfofthemainfrequency.TheL2cachecapacitywillalsoaffecttheperformanceoftheCPU.Theprincipleisthatthelargerthebetter,theL2cacheofordinarydesktopCPUsisgenerally128KBto2MBorhigher,andtheL2cacheofCPUsusedonnotebooks,serversandworkstationscanreachupto1MB-3MB.Sincethehigherthespeedofthecache,themoreexpensiveitis,sosomecomputersystemshavetwoormorelevelsofcache.Thefirst-levelcacheclosetotheCPUhasthehighestspeedandthesmallestcapacity.Thesecond-levelcachehasaslightlylargercapacityandaslightlylowerspeed.

Thecacheisjustacopyofasmallpartofthedatainthememory,sowhentheCPUlooksfordatainthecache,itwillnotbefound(becausethedataisnotcopiedfromthememorytothecache).Atthattime,theCPUwillstilllookfordatainthememory,sothesystemspeedwillslowdown,buttheCPUwillcopythedatatothecachesothatitwillnotberetrievedfromthememorynexttime.Astimechanges,themostfrequentlyaccesseddataisnotstatic.Thatistosay,thedatathatwasnotfrequentlyaccessedjustnowneedstobeaccessedfrequently.Themostfrequentdatajustnowisnotfrequent,soItissaidthatthedatainthecacheshouldbereplacedfrequentlyaccordingtoacertainalgorithm,soastoensurethatthedatainthecacheisaccessedmostfrequently.

Workingprinciple

TheworkingprincipleofthecacheisthatwhentheCPUwantstoreadapieceofdata,itfirstsearchesitfromtheCPUcache,andthenreadsitimmediatelyandsendsittotheCPUforprocessing;,ItreadsfromtherelativelyslowmemoryandsendsittotheCPUforprocessing,andatthesametimetransfersthedatablockwherethedataislocatedintothecache,sothattheentireblockofdatacanbereadfromthecacheinthefuture,noneedtocallRAM.ItisthisreadmechanismthatmakestheCPUreadcachehitrateveryhigh(mostCPUscanreachabout90%),whichmeansthat90%ofthedatathattheCPUwillreadnexttimeareintheCPUcache,onlyabout10%Needstobereadfrommemory.ThisgreatlysavesthetimefortheCPUtodirectlyreadthememory,andalsomakestheCPUbasicallynoneedtowaitwhenreadingdata.Ingeneral,theorderinwhichtheCPUreadsdataiscachedfirstandthenmemory.

RAM(Random-AccessMemory)isoppositetoROM(Read-OnlyMemory).RAMistheonethatdisappearsafterpowerfailure,andtheinformationwillnotdisappearafterROMpowerfailure.whichtype.RAMisdividedintotwotypes,oneisstaticRAM,SRAM(StaticRAM);theotherisdynamicRAM,DRAM(DynamicRAM).Thestoragerateoftheformerismuchfasterthanthelatter,andthememoryusedisgenerallydynamicRAM.Inordertoincreasethespeedofthesystem,itisenoughtoexpandthecache.Thelargertheexpansion,themoredatacachedandthefasterthesystem.ThecacheisusuallystaticRAM,andthespeedisveryfast,buttheintegrationofstaticRAMislow(storageForthesamedata,thevolumeofstaticRAMis6timesthatofdynamicRAM),andthepriceishigh(staticRAMofthesamecapacityisfourtimesthatofdynamicRAM).ItcanbeseenthatexpandingstaticRAMasacacheisaverystupidbehavior,butforToimprovetheperformanceandspeedofthesystem,itisnecessarytoexpandthecache.Inthisway,thereisacompromisemethod.InsteadofexpandingtheoriginalstaticRAMcache,somehigh-speeddynamicRAMisaddedasacache.Thespeedofthesehigh-speeddynamicRAMishigherthanthatoftheconventionaldynamicRAMisfast,butslowerthantheoriginalstaticRAMcache.TheoriginalstaticRAMcacheiscalledthefirstlevelcache,andthedynamicRAMthatwasaddedlateriscalledthesecondlevelcache.

Функционална роля

Кешът на твърдия диск играе главно триролки:

Pre-reading

WhentheharddiskiscontrolledbytheCPUinstruction,itstartstoread.Whenfetchingdata,thecontrolchipontheharddiskwillcontroltheheadtoreadthedatainthenextorseveralclustersoftheclusterbeingreadintothecache(becausethedataontheharddiskisstoredcontinuously,thereadhitrateisrelativelyhighHigh),whenthedatainthenextorseveralclustersneedstoberead,theharddiskdoesnotneedtoreadthedataagain,justtransferthedatainthecachetothememorydirectly,becausethecacherateismuchhigherthanThereadandwritespeedofthemagneticheadcanachievethepurposeofsignificantlyimprovingperformance.

Запис

Кеш (16 снимки)

Whentheharddiskreceivesaninstructiontowritedata,itwillnotwritethedataimmediatelyIsstoredonthedisc,buttemporarilystoredinthecache,andthensendsa"datawritten"signaltothesystem,thenthesystemwillthinkthatthedatahasbeenwritten,andcontinuetoperformthefollowingwork,andtheharddiskisinWhenitisidle(whennotreadingorwriting),thedatainthecacheiswrittentothedisk.Althoughtheperformanceofwritingdatahasbeenimprovedtoacertainextent,italsoinevitablybringssecurityrisks-whenthedataisstillinthecache,thepowerissuddenlylost,thenthedatawillbelost.Forthisproblem,theharddiskmanufacturersnaturallyhaveasolution:whenthepowerisoff,theheadwilluseinertiatowritethedatainthecacheintoatemporarystorageareaotherthantrackzero,andthenwritethedatatothedestinationafterthenextstartup.

Temporarystorage

Sometimes,somedatawillbeaccessedfrequently.Forexample,theinternalcacheoftheharddisk(akindoftemporarystorage)willstoresomefrequentlyreaddatainthecache.Itcanbetransferreddirectlyfromthecachewhenitisreadagain.Thecacheislikethememoryofacomputer.Whentheharddiskreadsandwritesdata,itisresponsiblefordatastorageandstorage.Inthisway,notonlycanthetimefordatareadandwritebegreatlyreducedtoimprovetheuseefficiencyoftheharddisk.Atthesametime,theuseofcachecanalsoreducefrequentreadsandwritesoftheharddisk,makingtheharddiskquieterandmorepower-saving.Withalargerharddiskcache,youwillbefasterwhenreadinggames,fasterwhencopyingfiles,andmoreadvancedinsystemstartup.

Thesizeofthecachecapacityisdifferentfordifferentbrandsandmodels.Theearlyharddiskcacheisbasicallyverysmall,onlyafewhundredKB,whichcannolongermeettheneedsofusers.16MBand32MBcachesarecurrentlyusedbymainstreamharddrives,andthereareproductswithlargercachecapacitiesinserversorspecialapplications,evenreaching64MB,128MB,andsoon.Althoughthelarge-capacitycachecanstoremoredatainthecachewhiletheharddiskisreadingandwriting,toincreasetheaccessrateoftheharddisk,itdoesnotmeanthatthelargerthecache,themoreoutstandingitis.Thereisanalgorithmicproblemwithcachedapplications.Evenifthecachecapacityislargewithoutanefficientalgorithm,thehitrateofcacheddataintheapplicationwillbelow,andtheadvantagesoflarge-capacitycachecannotbeeffectivelyused.Algorithmsarecomplementarytocachecapacity.Large-capacitycachesrequiremoreefficientalgorithms,otherwiseperformancewillbegreatlyreduced.Fromatechnicalpointofview,high-capacitycachealgorithmsareanimportantfactorthatdirectlyaffectstheperformanceofharddrives.Largercapacitycacheisaninevitabletrendinthedevelopmentofharddisksinthefuture.

Technologydevelopment

TheearliestCPUcachewasawhole,andthecapacitywasverylow.IntelbegantoclassifycachesfromthePentiumera.Atthattime,thecacheintegratedintheCPUcorewasnotenoughtomeettheneedsoftheCPU,andthelimitationsonthemanufacturingprocesscouldnotgreatlyincreasethecapacityofthecache.Therefore,thereisacacheintegratedonthesamecircuitboardastheCPUoronthemotherboard.Atthistime,thecacheintegratedwiththeCPUcoreiscalledthefirst-levelcache,andtheexternaloneiscalledthesecond-levelcache.Thefirstlevelcacheisalsodividedintodatacache(DataCache,D-Cache)andinstructioncache(InstructionCache,I-Cache).Thetwoarerespectivelyusedtostoredataandexecuteinstructionsforthesedata,andbothcanbeaccessedbytheCPUatthesametime,reducingconflictscausedbycontentionforCache,andimprovingprocessorperformance.WhenIntelintroducedthePentium4processor,itreplacedtheinstructioncachewithanewly-addedfirst-leveltrackingcachewithacapacityof12KμOps,whichmeansitcanstore12Kmicroinstructions.

WiththedevelopmentoftheCPUmanufacturingprocess,thesecond-levelcachecanalsobeeasilyintegratedintotheCPUcore,andthecapacityisalsoincreasingyearbyyear.WhetheritisintegratedintheCPUornottodefinethefirstandsecondlevelcachesisnolongeraccurate.Andasthesecond-levelcacheisintegratedintotheCPUcore,thepreviousdivisionofthesecond-levelcacheandtheCPUhasbeenchanged.Atthistime,itworksatthesamerateasthemainfrequency,whichcanprovideahighertransmissionratefortheCPU..Thesecond-levelcacheisoneofthekeystotheperformanceoftheCPU.WhentheCPUcoredoesnotchange,increasingthesecond-levelcachecapacitycangreatlyimprovetheperformance.AndthedifferencebetweenthehighandlowendofthesamecoreCPUisoftendifferentinthesecondlevelcache,whichshowstheimportanceofthesecondlevelcachetotheCPU.

TheCPUfindsusefuldatainthecacheiscalledahit.WhenthereisnodataneededbytheCPUinthecache(calledamissatthistime),theCPUaccessesthememory.Intheory,inaCPUwithasecond-levelcache,thehitrateforreadingthefirst-levelcacheis80%.Thatistosay,theusefuldatafoundintheCPU'sfirst-levelcacheaccountsfor80%ofthetotaldata,andtheremaining20%​​isreadfromthesecond-levelcache.Duetotheinabilitytoaccuratelypredictthedatatobeexecuted,thehitrateofreadingthesecond-levelcacheisalsoabout80%(readingusefuldatafromthesecond-levelcacheaccountsfor16%ofthetotaldata).Thentheremainingdatahastobecalledfrommemory,butthisisalreadyafairlysmallpercentage.Higher-endCPUswillalsohaveathird-levelcache,whichisdesignedfordatathatmissesafterreadingthesecond-levelcache—atypeofcache.InaCPUwithathird-levelcache,onlyabout3%ofthedataneedstoberetrievedfromthecache.Calledinmemory,whichfurtherimprovestheefficiencyoftheCPU.InordertoensureahighhitrateduringCPUaccess,thecontentinthecacheshouldbereplacedaccordingtoacertainalgorithm.Amorecommonlyusedalgorithmisthe"leastrecentlyusedalgorithm"(LRUalgorithm),whicheliminatesthelinesthathavebeenleastvisitedinthemostrecentperiodoftime.Therefore,itisnecessarytosetacounterforeachrow.TheLRUalgorithmclearsthecounterofthehitrowandadds1tothecountersoftheotherrows.Whenreplacementisneeded,thedatarowwiththelargestrowcountercountiseliminated.Thisisanefficientandscientificalgorithm.Itscounterclearingprocesscaneliminatesomedatathatisnolongerneededafterfrequentcallsfromthecacheandimprovetheutilizationofthecache.InCPUproducts,thecapacityofthefirstlevelcacheisbasicallybetween4KBand64KB,andthecapacityofthesecondlevelcacheisdividedinto128KB,256KB,512KB,1MB,2MB,4MB,etc.Thereisnotmuchdifferencebetweenthefirst-levelcachecapacityofeachproduct,andthesecond-levelcachecapacityisthekeytoimprovingCPUperformance.TheincreaseinthecapacityofthesecondarycacheisdeterminedbythemanufacturingprocessoftheCPU.TheincreaseincapacitywillinevitablyleadtoanincreaseinthenumberoftransistorsinsidetheCPU.TointegratealargercacheonalimitedCPUarea,therequirementsforthemanufacturingprocesswillbehigher.MainstreamCPUsecondarycachesarearound2MB,amongwhichIntelhassuccessivelyintroducedhigh-performanceCPUswith4MBand6MBsecondarycachesfordesktopcomputersin2007,butthepriceisrelativelyhigh,andtheconfigurationrequirementsarenottoohigh.Myfriend,ageneraldual-coreCPUwith2MBL2cachecanbasicallymeetdailyInternetneeds.

Mainsignificance

Theprincipleofcachingworkis"localityofreference",whichcanbedividedintotemporallocalityandspatiallocality.SpatiallocalitymeansthattheCPUneedsacertaindataatacertainmoment,soitislikelythatthenextstepwillneedthedatanearby;timelocalitymeansthatwhenacertaindataisaccessedonce,itwillbere-examinedafterashortperiodoftime.Onevisit.Forapplications,nomatteritistheinstructionfloworthedataflow,thelocalityphenomenonofreferencewillappear.

Togiveasimpleexample,forexample,whenplayingaDVDmovie,theDVDdataconsistsofaseriesofbytes.Atthistime,theCPUwillprocesstheDVDdatafromthebeginningtotheendinturn.IftheCPUreadsthistimeTheDVDdatais1minuteand30seconds,sothenexttimeitisread,itwillstartfrom1minuteand31seconds.Therefore,inthiscase,theordereddataaresequentiallyreadintotheCPUforprocessing.Fromthedatapointofview,applicationssuchasWordusuallyhavegoodspatiallocality.Inuse,userswillnotopen7or8documentsatatime,andwillnotchangeoneofthedocumentswithafewwords.Mostusersopenoneortwodocumentsandthenprocessthemforalongtimewithoutdoingotherthings.Inthisway,thedatainthememorywillbeconcentratedinonearea,anditcanbecentrallyprocessedbytheCPU.

Consideringfromtheprogramcode,designersusuallytrytoavoidprogramjumpsandbranches,sothattheCPUcanprocesslargepiecesofcontinuousdatawithoutinterruption.Games,simulations,andmultimediaprocessingprogramsareusuallyrepresentativesofthisaspect,whichcontinuouslyprocesslargeblocksofdatawithsmallpiecesofcode.Butinofficeapplications,thesituationisdifferent.Changingfonts,formatting,andsavingdocumentsallrequiredifferentpartsoftheprogramcodetowork,andtheinstructionsusedareusuallynotinacontinuousarea.SotheCPUhastojumparoundinmemorytofindthecodeitneeds.Thismeansthatforofficeprograms,alargercacheisneededtoreadinmostfrequentlyusedcodesandputtheminacontiguousarea.Ifthecacheisnotenough,youneedthedatainthememory,andifthecacheislargeenough,allthecodecanbeputin,andyoucangetthehighestefficiency.Inthesameway,high-enddataapplicationsandgameapplicationsrequireahighercapacitycache.

CPUCache

CPUCache(CacheMemory)isatemporarymemorylocatedbetweentheCPUandthememory.Itscapacityismuchsmallerthanthememorybuttheexchangerateisfasterthanthememory.many.TheappearanceofthecacheismainlytosolvethecontradictionbetweentheCPUoperationrateandthememoryreadandwriterate,becausetheCPUoperationrateismuchfasterthanthememoryreadandwriterate,whichwillmaketheCPUspendalongtimewaitingforthedatatoarriveorwritethedataintothememory.Thedatainthecacheisasmallpartofthememory,butthissmallpartisabouttobeaccessedbytheCPUinashorttime.WhentheCPUcallsalargeamountofdata,itcanavoidthememoryandcallitdirectlyfromthecache,therebyspeedingupthereadingrate..ItcanbeseenthataddingcachetotheCPUisanefficientsolution,sothattheentireinternalmemory(cache+memory)becomesahigh-speedstoragesystemwithbothcacheandmemory.ThecachehasagreatimpactontheperformanceoftheCPU,mainlyduetotheCPU'sdataexchangesequenceandthebandwidthbetweentheCPUandthecache.

ThecachebasicallyusesSRAMmemory.SRAMistheabbreviationofEnglishStaticRAM.Itisamemorywithstaticaccessfunction.Itcansavethedatastoredinitwithoutrefreshingthecircuit.UnlikeDRAMmemory,whichrequiresarefreshcircuit,theDRAMmustberefreshedandchargedeveryonceinawhile,otherwisetheinternaldatawilldisappear,soSRAMhashigherperformance,butSRAMalsohasitsshortcomings,thatis,itsintegration.Lower,DRAMmemoryofthesamecapacitycanbedesignedintoasmallervolume,butSRAMrequiresalargevolume,whichisalsoanimportantreasonwhythecachecapacitycannotbemadetoolarge.Itscharacteristicsaresummarizedasfollows:Theadvantagesareenergysaving,fastspeed,noneedtocooperatewiththememoryrefreshcircuit,andcanimprovetheoverallworkefficiency.Thedisadvantagesarelowintegration,largevolumeofthesamecapacity,andhighprice,whichcanonlybeusedinasmallamountforthekey.Sexualsystemtoimproveefficiency.

Принцип на работа

1.Ред на четене

WhentheCPUwantstoreadapieceofdata,itfirstlooksintheCache,ifIfitisfound,itwillbereadimmediatelyandsenttotheCPUforprocessing;ifitisnotfound,itwillbereadfromthememoryatarelativelyslowspeedandsenttotheCPUforprocessing.Atthesametime,thedatablockwherethedataislocatedcanbetransferredtotheCache,whichcanmakesubsequentadjustments.TheblockdataisreadfromtheCache,andthereisnoneedtocallthememory.

ItisthisreadmechanismthatmakesthehitrateofCPUreadCacheveryhigh(mostCPUscanreachabout90%),whichmeansthat90%ofthedatatobereadbytheCPUnexttimeareinIntheCache,onlyabout10%needtobereadfrommemory.ThisgreatlysavesthetimefortheCPUtodirectlyreadthememory,andalsomakestheCPUbasicallynoneedtowaitwhenreadingdata.Ingeneral,theorderinwhichtheCPUreadsdataisCachefirstandthenmemory.

2,Класификация на кеша

IntelhasseparatedCachefromPentium,whichisusuallydividedintofirst-levelcacheL1andsecond-levelcacheL2.Inthepastconcept,L1CacheisintegratedintheCPUandiscalledon-chipCache.InL1,therearealsodataCache(D-Cache)andinstructionCache(I-Cache).Theyarerespectivelyusedtostoredataandexecuteinstructionsforthesedata,andthetwoCachescanbeaccessedbytheCPUatthesametime,reducingconflictscausedbycompetingCachesandimprovingprocessorperformance.

3.Readhitrate

TheCPUfindsusefuldataintheCacheiscalledahit.WhenthereisnodataneededbytheCPUintheCache(Atthistime,itiscalledamiss),theCPUonlyaccessesthememory.Theoretically,inaCPUwithLevel2Cache,thehitrateforreadingL1Cacheis80%.Thatistosay,theusefuldatafoundbytheCPUfromtheL1Cacheaccountsfor80%ofthetotaldata,andtheremaining20%​​isreadfromtheL2Cache.Duetotheinabilitytoaccuratelypredictthedatatobeexecuted,thehitrateofreadingL2isalsoabout80%(readingusefuldatafromL2accountsfor16%ofthetotaldata).Thentheremainingdatahastobecalledfrommemory,butthisisalreadyafairlysmallpercentage.Insomehigh-endCPUs(likeIntel’sItanium),weoftenhearL3Cache,whichisdesignedfordatathatmissesafterreadingL2Cache—akindofCache.AmongCPUswithL3Cache,thereareonlyabout5%Ofthedataneedstobecalledfrommemory,whichfurtherimprovestheefficiencyoftheCPU.

Level1Cache

Level1Cache(Level1Cache)isreferredtoasL1Cache.ItislocatednexttotheCPUcore.ItistheCPUcachethatismostcloselyintegratedwiththeCPU,anditisalsotheearliestinhistory.CPUcache.Becausethetechnicaldifficultyandmanufacturingcostofthefirst-levelcachearethehighest,theincreasedtechnicaldifficultyandcostincreasebroughtaboutbyincreasingthecapacityareverylarge,buttheperformanceimprovementbroughtbyitisnotobvious,thecostperformanceisverylow,andtheexistingfirst-levelcachehitsTherateisalreadyveryhigh,sothefirstlevelcacheisthesmallestofallcaches,muchsmallerthanthesecondlevelcache.

Thefirstlevelcachecanbedividedintothefirstleveldatacache(DataCache,D-Cache)andthefirstlevelinstructioncache(InstructionCache,I-Cache).Thetwoareusedtostoredataanddecodetheinstructionsthatexecutethesedatainrealtime,andbothcanbeaccessedbytheCPUatthesametime,reducingconflictscausedbycontentionforCache,andimprovingprocessorperformance.ThefirstleveldatacacheandthefirstlevelinstructioncacheofmostCPUshavethesamecapacity.Forexample,AMD’sAthlonXPhasa64KBlevelonedatacacheanda64KBleveloneinstructioncache.Thefirstlevelcacheisrepresentedby64KB+64KB,AndtherestoftheCPU'sL1cacherepresentationmethodcanbededucedbyanalogy.

Intel'sCPUwithNetBurstarchitecture(themosttypicalisPentium4)hasaspeciallevelofcache,usinganewlyaddedleveloftracecache(ExecutionTraceCache,T-CacheorETC))Toreplacethefirst-levelinstructioncache,withacapacityof12KμOps,whichmeansthatitcanstore12Kor12000decodedmicro-instructions.Theoperatingmechanismofthefirst-leveltrackingcacheandthefirst-levelinstructioncacheisdifferent.Thefirst-levelinstructioncacheonlydecodesinstructionsinrealtimeanddoesnotstoretheseinstructions,whilethefirst-leveltrackingcachealsodecodessomeinstructions.Instructionsarecalledmicro-ops,andthesemicro-instructionscanbestoredinthefirst-leveltracecache,andthereisnoneedtodecodetheprogrameverytime.Therefore,thefirst-leveltracecachecaneffectivelyincreasethenumberofinstructionsunderhighoperatingfrequency.Thedecodingcapabilityofthemicro-ops,andμOpsismicro-ops,whichmeansmicro-operation.Itprovidesμopstotheprocessorcoreataveryhighrate.TheIntelNetBurstmicro-architectureusesanexecutiontrackingcachetoseparatethedecoderfromtheexecutionloop.Thistracecacheprovidesuopstothecorewithahighbandwidth,whichisessentiallysuitableformakingfulluseoftheinstruction-levelparallelmechanisminthesoftware.Intelhasnotannouncedtheactualcapacityofthefirst-leveltrackingcache,butonlyknowsthatthefirst-leveltrackingcachecanstore12,000micro-ops(micro-ops).Therefore,youcannotsimplyusethenumberofmicroinstructionstocomparethesizeoftheinstructioncache.Infact,thesingle-coreNetBurstarchitectureCPUusing8Kμopscacheisbasicallyenough,andtheextra4kμopscangreatlyimprovethecachehitrate.Ifyouwanttousehyper-threadingtechnology,12KμOpswillbesomewhatinsufficient,whichiswhysometimesIntelprocessorswillcauseperformancedegradationwhenusinghyper-threadingtechnology.Forexample,theNorthwoodcore'sfirst-levelcacheis8KB+12KμOps,whichmeansitsfirst-leveldatacacheis8KB,andthefirst-leveltrackingcacheis12KμOps;andthePrescottcore'sfirst-levelcacheis16KB+12KμOps,whichmeansitsfirst-leveldatacacheis16KB,Thefirst-leveltrackingcacheis12KμOps.Here,12KμOpsisdefinitelynotequalto12KB,andtheunitsarealldifferent,oneisμOpsandtheotherisByte(byte),andtheiroperatingmechanismsarecompletelydifferent.SothosewhosimplyaddthefirstlevelcacheofIntel'sCPU,forexample,saythattheNorthwoodcoreisa20KBfirst-levelcache,andthePrescottcoreissaidtobea28KBfirst-levelcache,andbasedonthis,itisconsideredthatthefirst-levelcachecapacityofIntelprocessorsisfarTheviewthattheprimarycachecapacityofAMDprocessorsislowerthan128KBiscompletelywrong,andthetwoarenotcomparable.InthecomparisonofCPUswithdifferentarchitectures,itisdifficultformanycachestofindthecorrespondingthings.Evencacheswithsimilarnameshavedifferentdesignideasandfunctiondefinitions.Atthistime,simplearithmeticadditioncannotbeusedforcomparison;andinthearchitectureInaverysimilarCPUcomparison,itmakessensetocomparethecachesizesofvariousfunctionsseparately.

Level2cache

Level2cache,itissomebuffermemoryinsidetheprocessor,itsfunctionisthesameasmemory.Datingbacktothe1980s,astheprocessorwasrunningfasterandfaster,slowly,thespeedatwhichtheprocessorneededtoreaddatafromthememorybecamehigherandhigher.However,therateofincreaseofthememoryspeedisveryslow,andthepriceofthememorythatcanreadandwritedataathighspeedisveryhighandcannotbewidelyadopted.Fromtheperspectiveofperformance-priceratio,Intelandotherprocessordesignandproductioncompanieshavecomeupwithasolution,whichistouseasmallamountofhigh-speedmemoryincombinationwithalargeamountoflow-speedmemorytoprovidedatafortheprocessortogether.Inthisway,theoptimalperformanceandcostofusearebothconsidered.Thosehigh-speedmemoryarecalledbuffermemory,or"cache"forshort,becausetheyarelocatedbetweenthecpuandthememoryandarealsotheplacewheredataistemporarilystored.Itsfunctionislikeaplacewheregoodsaretemporarilystackedinawarehouse.Whenthegoodsareplacedfromthetransportvehicle,theyaretemporarilystackedinthebufferarea,andthenmovedtotheinternalstorageareaforlong-termstorage.Thegoodsarestoredinthisareaforashorttime,whichisatemporarycargoyard.Initially,thecachewasonlylevelone,buttheprocessorspeedincreasedandthelevelonecachewasnotenough,sothesecondlevelcachewasadded.Thesecond-levelcacheisamemorywithaslowerspeedandalargercapacitythanthefirst-levelcache.Itismainlyusedfortemporaryexchangeofdatabetweenthefirst-levelcacheandthememory.Inordertoadapttothefasterprocessorp4ee,thethird-levelcachehasappeared.Itscapacityislargerandthespeedisslowerthanthesecond-levelcache,butitismuchfasterthanthememory.Theappearanceofthecachehasgreatlyimprovedtheoperatingefficiencyofthecpuprocessor.Thisareastoresdatathatisfrequentlyusedbythecpu.Therefore,thelargerthecache,thehighertheefficiencyoftheprocessor.Atthesametime,thephysicalstructureofthecacheislargerthanthatofthememory.Alotofcomplexity,soitscostisalsoveryhigh.

Theresultofextensiveuseofsecondarycacheistheimprovementofprocessoroperatingefficiencyandthesubstantialincreaseincostandprice.Forexample,thecoresoftheXeonprocessorusedontheserverandtheordinaryp4processorarebasicallythesame,thatis,thesecond-levelcacheisdifferent.Xeon'ssecond-levelcacheis2mb-16mb,p4'ssecond-levelcacheis512kb,sothecheapestXeonisalsomoreexpensivethanthemostexpensivep4,thereasonisthatthesecond-levelcacheisdifferent.Thatisl2cache.DuetothelimitationoftheL1levelcachecapacity,inordertoincreasethecomputingspeedofthecpuagain,ahigh-speedmemory,namelytheleveltwocache,isplacedoutsidethecpu.Theworkingfrequencyismoreflexible,anditcanbethesamefrequencyasthecpuordifferent.Whenthecpureadsdata,itfirstlooksinl1,thenfroml2,thenthememory,andthentheexternalmemory.Therefore,theimpactofl2onthesystemcannotbeignored.

Theearliestcpucacheisawhole,andthecapacityisverylow,Intelhasclassifiedthecachesincethepentiumera.Atthattime,thecacheintegratedinthecpucorewasnolongersufficienttomeettheneedsofthecpu,andthelimitationsonthemanufacturingprocesscouldnotgreatlyincreasethecapacityofthecache.Therefore,thereisacacheintegratedonthesamecircuitboardasthecpuoronthemotherboard.Atthistime,thecacheintegratedwiththecpucoreiscalledthefirst-levelcache,andtheexternaloneiscalledthesecond-levelcache.Withthedevelopmentofthecpumanufacturingprocess,thesecond-levelcachecanalsobeeasilyintegratedintothecpucore,andthecapacityisalsoincreasingyearbyyear.Itisnolongeraccuratetodefinethefirstandsecondlevelcacheswhethertheyareintegratedinthecpuornot.Andasthesecond-levelcacheisintegratedintothecpucore,thepreviousdivisionofthesecond-levelcacheandthecpuhasbeenchanged.Atthistime,itworksatthesamerateasthemainfrequency,whichcanprovideahighertransmissionrateforthecpu..

Three-levelcache

L3Cache(three-levelcache)isdividedintotwotypes,theearlyonewasexternal,andgraduallybecamebuilt-in.AnditsactualeffectisthattheapplicationofL3cachecanfurtherreducememorylatency,andatthesametimeimprovetheperformanceoftheprocessorwhencomputinglargeamountsofdata.Reducingmemorylatencyandimprovingthecomputingpoweroflargeamountsofdataareveryhelpfulforgames.TheadditionofL3cacheintheserverfieldstillhasasignificantimprovementinperformance.Forexample,aconfigurationwithalargerL3cachewillusephysicalmemorymoreefficiently,soitsslowerdiskI/Osubsystemcanhandlemoredatarequests.ProcessorswithlargerL3cachesprovidemoreefficientfilesystemcachingbehaviorandshortermessageandprocessorqueuelengths.

Infact,theearliestL3cachewasappliedtotheK6-IIIprocessorreleasedbyAMD.Atthattime,theL3cachewaslimitedbythemanufacturingprocessandwasnotintegratedintothechip,butintegratedonthemotherboard.Infact,theL3cache,whichcanonlybesynchronizedwiththesystembusfrequency,isnotmuchdifferentfromthemainmemory.Later,theL3cachewasusedbyIntel'sItaniumprocessorfortheservermarket.ThenthereareP4EEandXeonMP.IntelalsoplanstointroduceanItanium2processorwith9MBL3cacheandadual-coreItanium2processorwith24MBL3cacheinthefuture.

ButbasicallytheL3cacheisnotveryimportanttotheperformanceimprovementoftheprocessor.Forexample,theXeonMPprocessorwith1MBL3cacheisstillnotOpteron'sopponent.Itcanbeseenthattheincreaseinfront-sidebusisbetterthanIncreasedcachebringsmoreeffectiveperformanceimprovement.

SuperCache

SuperCache,alsoknownasSuperCache,thespeedbottleneckofthecomputerismainlythereadandwritespeedofthemechanicalharddisk.SuperCacheuseshigh-speedmemoryfortheharddiskreadandwriteasacache.Itisthefirstchoiceforspeedinguplargememorymachinesandanindispensabletoolforservers.

Workingprinciple:ForSuperCache,thereisnoconceptoffilesontheharddisk.Itisjustasmallgridofauser-specifiedsize,suchas32k.Thecontentofasmallgridontheharddiskisread,thenItiscachedinthememory,andthenexttimethissmallgridisread,itisreaddirectlyfromthememorywithoutanyactionontheharddisk,thusachievingthepurposeofacceleration.Therearetwocachemodes,1.MFUmode,wheneachsmallgridisread,asimplecountismade.Whenthecacheisfull,thesmallercountvaluewillbeclearedoutofthecachefirst;2.MRUmode,simpleQueue,firstinfirstout.

Systemcache

ComparingtheCPUtoafurniturefactoryinthecity,andcomparingthestoragesystemtoawoodfactoryinthesuburbs,theactualsituationisthatthewoodfactoryisgettingawayfromthefurniturefactory.Evenifalargertruckisusedtotransportthewood,thefurniturefactoryhastostopworkandwaitforthewoodtoarrive.Insuchasituation,onesolutionistobuildasmallwarehouseintheurbanareaandplacesomewoodmaterialsmostcommonlyusedbyfurniturefactories.Thiswarehouseisactuallythe"Cache"ofthefurniturefactory,andthefurniturefactorycancontinuouslydeliverthewoodneededintimefromthewarehouse.Ofcourse,thelargerthewarehouseandthemorewoodstored,thebettertheeffect,becauseeventhelesscommonlyusedthingscanbefoundinthewarehouse.Ifthereisnowoodinthewarehouse,wewillcontinuetolookforitfromthewoodfactoryoutsidethecity,andthefurniturefactorywillhavetowait.ComparedwiththeL1cache,thewarehousecanbereadandwrittenintimeandquicklybytheCPU,soitstoresthemostcommonlyusedcodesanddataoftheCPU(howtoselectthe"mostcommonlyused"willbeintroducedlater).TheL1cacherateismuchfasterthansystemmemorybecauseitusesSRAM,whichusesfourtosixtransistorsonasinglechipofmemory.ThisalsomakesthecostofSRAMquitehigh,soitcannotbeusedintheentirestoragesystem.OnmostCPUs,theL1cacheandthecoreareonthesamechip.Inthecaseofafurniturefactory,itislikeafactoryandawarehouseonthesamestreet.ThisdesignallowstheCPUtogetdatafromthenearestandfastestplace,butitalsomakesthedistancebetweenthe"woodfactoryoutsidethecity"andthe"warehouse"andthe"furniturefactory"almostfaraway.Inthisway,thedatarequiredbytheCPUisnotintheL1cache,thatis,"CacheMiss",andittakesalongtimetofetchdatafromthestoragedevice.Thefastertheprocessorspeed,thegreaterthegapbetweenthetwo.Usingahigh-frequencyprocessorlikePentium4,gettingdatafromthememoryisequivalenttothe"timberfactory"locatedinanothercountry.

Infact,thecacheisapartoftheCPU.ItexistsintheCPUatwhichtheCPUaccessesdataataveryfastrate.Itcanaccessandprocessonebillioninstructionsanddatainonesecond(term:CPUfrequency1G),andthememoryismuchslower.Fastmemorycanreachtensofmegabytes.Itcanbeseenhowthespeeddifferencebetweenthetwois.ThebigcacheistosolvetheproblemofthedifferencebetweentheCPUspeedandthememoryspeed.ThememoryisthemostaccessedbytheCPU.FrequentdataandinstructionsarecopiedintothecacheintheCPU,sothattheCPUcannotoftenfetchdatafromtheslowmemorylikea"snail".TheCPUonlyneedstofetchitfromthecache,andthecacherateisfasterthanMemoryismuchfaster.Specialpointstobepointedouthereare:1.Becausethecacheisonlyacopyofasmallpartofthedatainthememory,whentheCPUlooksfordatainthecache,itwillnotbefound(becausethedataisnotcopiedfromthememorytotheCache).Atthistime,theCPUwillstillfinddatainthememory,sothesystemspeedwillslowdown,buttheCPUwillcopythedatatothecachesothatitwillnotberetrievedfromthememorynexttime.2.Astimechanges,themostfrequentlyaccesseddataisnotstatic,thatistosay,thedatathatisnotfrequentlyaccessedjustnowneedstobeaccessedfrequently.Justnowitwasthemostfrequentlyaccesseddata,andthenitwasnot.Frequent,sothedatainthecacheshouldalwaysbereplacedaccordingtoacertainalgorithm,soastoensurethatthedatainthecacheisthemostfrequentlyaccessed3.Regardingthefirstlevelcacheandthesecondlevelcache,inordertodistinguishthesetwoconcepts,wefirstUnderstandtherelativerelationshipbetweenRAMandROM.RAMistheonewhoseinformationdisappearsafterpowerfailure,andROMistheonewhoseinformationwillnotdisappearevenafterpowerfailure.RAMisdividedintotwotypes:oneisstaticRAMandSRAM;theotherisdynamicRAMandDRAM.

Diskcache

Diskcacheisdividedintoreadcacheandwritecache.Readcachemeansthattheoperatingsystemkeepsthefiledatathathasbeenreadinthememoryspacewhenthememoryisrelativelyfree(thismemoryspaceiscalledthe"memorypool"),andthenexttimethesoftwareortheuserreadsthesameThefiledoesnothavetobereadfromthediskagain,therebyincreasingthespeed.Thewritecacheactuallysavesthedatatobewrittentothediskinthememoryspaceallocatedbythesystemforthewritecache.Whenthedatasavedinthememorypoolreachesacertainlevel,thedataissavedtotheharddisk.Thiscanreduceactualdiskoperations,effectivelyprotectthediskfromdamagecausedbyrepeatedreadandwriteoperations,andreducethetimerequiredforwriting.

Accordingtothedifferentwritingmethods,therearetwotypes:write-throughandwrite-back.Whenreadingtheharddiskdatainthewritegeneralmode,thesystemfirstcheckstherequestcommandtoseeiftherequireddataisinthecache.Ifso,thecachesendstheresponsedata.Thisprocessiscalledahit.Inthisway,thesystemdoesnothavetoaccessthedataintheharddisk.SincethespeedofSDRAMismuchfasterthanthatofmagneticmedia,thespeedofdatatransmissionisaccelerated.Thewrite-backtypeistofindthedatainthecachewhentheharddiskdataiswritten,andwhenthedataisfound,thecachewillwritethedatatothedisk.Mostharddisksusethewrite-backcache,whichgreatlyimprovestheperformance.TheEnglishnameofthecacheisCache.CPUcacheisalsoakindofmemory,withfastdataexchangerateandhighfrequencyofoperation.Diskcacheisamemoryareaallocatedinordinaryphysicalmemorybytheoperatingsystemfordiskinputandoutput.

Theharddiskbuffer,theharddiskbufferistheplacewheretheharddiskexchangesdatawiththeexternalbus.Theprocessofharddiskreadingdataistoconvertmagneticsignalsintoelectricalsignals,fillandemptythebufferagainandagain,fillagain,andthenempty,stepbystepaccordingtothecycleofthePCIbus.Itcanbeseenthattheroleofthebufferisveryimportant.of.Itsroleisalsotoimproveperformance,butitisdifferentfromthecachein:1.Itisafixed-capacityhardware,unlikethecachethatcanbedynamicallyallocatedinthememorybytheoperatingsystem.Second,itsimpactonperformancegreatlyexceedstheimpactofdiskcachingonperformance.Becausethereisnobuffer,itwillberequiredtoreadorwritetothediskeverytimeaword(usually4bytes)istransferred.

Кеширане

Кешът може да бъде разделен на кеш за директно картографиране, групов пасосоциативен кеш и напълно асоциативен кеш.

Кеш с директно картографиране

В този тип кеш, всяка група е само един ред, E=1, и структурата е много проста. Целият кеш е еквивалентен на едномерен масив от групи. Замяната на реда в случай на пропуски е твърде проста, справедлива линия, което не е заместване на удара. За да се адаптира към малкия капацитет, определен блок данни в след това+1-ви слой от паметта може да бъде поставен само от поднабор на определено местоположение в горния слой (това е, след това десетия слой) на паметта. Ако приемем, че директно картографиран кеш, (S, E, B,m)=(4,1,2,4),това да кажем,дреска за глава4бита(16),има четири групи,всяка група един ред,два байта блок. Тъй като има 16 адреса, представляващи 16 байта, има общо 8 блока, но има само 4 групи, тоест 4 реда. ecachegroup.Например, 0 и 4 са картографирани към група 1, 1 и 5 са ​​картографирани към група 2 и скоро. Тук идва проблемът. Например, когато първо се прочете блок0, данните на блок0 се кешират в група 0. След това чета блок4 отново, тъй като блок4 също е присвоен на група0, а група0 има само един ред, така че данните от предишния блок0 ще бъдат презаписани. Ако прочета блок0 по-късно, данните ще бъдат загубени. velmemorytofindit.В реалната програма за цикъл е лесно да се причини тази ситуация, която се нарича трептене. Наличието на тази ситуация естествено значително влияе върху производителността. Следователно е необходима по-добра схема за картографиране.

Групов пасоциативен кеш

В груповия пасосоциативен кеш, E е по-голям от 1, което означава, че има множество кеш линии в група. Тъй като Eise е равно на, се нарича като много пътища, така че се нарича Epath групова връзка.

Thematchingofgroup-associatedrowsisabitmorecomplicated,becausethemarkbitandvalidbitofmultiplerowsneedtobechecked.Ifyoufinditintheend,it'sokay.Ofcourse,therowcontainingtherequireddatawillberemovedfromthenextlevelofstorageforreplacementifitcannotbefound,butwithsomanyrowsinagroup,whichrowtoreplace.Ifthereisablankline,itisnaturaltoreplacetheblankline.Ifthereisnoblankline,thensomeotherreplacementstrategiesaretriggered.Inadditiontotherandomstrategyintroducedjustnow,therearealsotheleastfrequentlyusedstrategies,andtheleastrecentlyusedstrategies.Thesestrategiesthemselvesrequireacertainamountofoverhead,butyoumustknowthattheoverheadofmissesisverylarge,soinordertoensurethehitrate,itisworthwhiletoadoptsomerelativelycomplicatedstrategies.

Fullyassociativecache

Theso-calledfullyassociativecacheisacachecomposedofagroupcontainingallcachelines(blockscanbeplacedanywhereinthecache).Sincethereisonlyonegroup,thegroupselectionisparticularlysimple.Atthistime,theaddressdoesnothaveagroupindex,onlythemarkandoffset,thatis,thetpartandthebpart.Theothersteps,rowmatchinganddataselection,andtheprincipleofgroupassociationarethesame,butthescaleismuchlarger.Iftheabovedescriptionofthesethreemappingmethodsisveryabstract,inordertobeabletounderstandmorethoroughly,comparethememorytoalargesupermarket,thethingsinthesupermarketarebytesordata.Inordertomakeiteasytoseedelicious,funandpopularthings,thesupermarketcanputthesethingstogetherinaspecialrecommendationcounter,whichisthecache.Ifyoujustputthesegoodsonthecounterandyouaredone,thenthisisacompletelyrelatedway.

Butifyouwanttofindwhatyouwant,youhavetolookfortheserecommendedgoods,andbecauseoftheuncertainlocation,youmayevensearchtheentirerecommendationcounter.Thisefficiencyisundoubtedlynothigh.Sothemanagerofthesupermarketdecidedtoadoptanothermethod,whichistodivideallrecommendedgoodsintomanycategories,suchas"jambiscuits","chocolatebiscuits","walnutmilk",etc.,andstoreonekindofgoodsoneachfloorofthecounter.Thisistheprincipleofdirectassociationaccess.Theadvantageofthisisthatitiseasyforcustomerstohaveatargeted,quickerandmoreeffectivesearch.

Butthismethodstillhasitsdisadvantages,thatis,iftherearemanycustomerswhoneedjambiscuits,andtherearerelativelyfewcustomerswhoneedchocolatebiscuits,obviouslythedemandforjambiscuitswillbefarmorethanthatofchocolatebiscuits.Thedemand,butthespaceforplacingthetwotypesofbiscuitsisthesame,sothissituationmayoccur:thestoragespaceforjambiscuitsisfarfrommeetingthemarketdemand,andthestoragespaceforchocolatebiscuitsisleftunused.Inordertoovercomethisshortcoming,thebossdecidedtoimprovetheinventorymethod:orclassifythegoods,buttheclassificationmethodhaschanged,accordingto"biscuits","milk","juice"andothercategoriesofinventory,thatis,nomatterwhatkindofbiscuitscanbeStoredinthespaceusedby"biscuits",thismethodobviouslyimprovesthesufficiencyofspaceutilizationandmakesstorageandsearchmethodsmoreflexible.

Technicalindicators

InCPUproducts,thecapacityofthefirstlevelcacheisbasicallybetween4kband64kb,andthecapacityofthesecondlevelcacheisdividedinto128kb,256kb,512kb,1mb,2mbWait.Thereisnotmuchdifferencebetweenthefirst-levelcachecapacityofeachproduct,andthesecond-levelcachecapacityisthekeytoimprovingcpuperformance.Theincreaseinthecapacityofthesecond-levelcacheisdeterminedbythecpumanufacturingprocess.Theincreaseincapacitywillinevitablyleadtoanincreaseinthenumberofinternaltransistorsinthecpu.Tointegratealargercacheonalimitedcpuarea,therequirementsforthemanufacturingprocesswillbehigher./p>

CachesizeisoneoftheimportantindicatorsofCPU,anditsstructureandsizehaveagreatinfluenceonCPUspeed.Simplyput,thecacheisusedtostoresomecommonlyusedorabouttobeuseddataorinstructions.Whenthesedataorinstructionsareneeded,theyaredirectlyreadfromthecache.Thisismuchfasterthanreadingfromthememoryoreventheharddisk.Significantlyincreasetheprocessingrateofthecpu.Theso-calledprocessorcacheusuallyreferstothesecondarycache,orexternalcache.Thatis,thehigh-speedbuffermemoryisasmall-scalebuthigh-speedmemorylocatedbetweentheCPUandthemainmemorydram(dynamicram),usuallycomposedofsram(staticrandomaccessmemory).Usedtostoredatathatisfrequentlyusedbythecpu,sothatthecpudoesnothavetorelyontheslowerdram(dynamicrandomaccessmemory).L2cachehasalwaysbeenatypeofmemorywithextremelyfastspeedandveryexpensiveprice,calledsram(staticram),sram(staticram)istheEnglishabbreviationofstaticmemory.Becausesramusesthesamesemiconductorprocessasmakingcpu,comparedwithdynamicmemorydram,sramhasafasteraccessrate,butithasalargervolumeandahighprice.

Thebasicideaof​​theprocessorcacheistouseasmallamountofsramasthebufferbetweenthecpuandthedramstoragesystem,thatis,thecachesystem.Anotablefeatureof80486andhigher-endmicroprocessorsisthattheprocessorchipintegratessramasacache.Becausethesecachesareinstalledinthechip,theyarecalledon-chipcaches.Thecachecapacityofthe486chipisusually8k.High-endchipssuchaspentiumare16kb,andpowerpcscanreach32kb.Thepentiummicroprocessorfurtherimprovestheon-chipcache,usingdataanddual-channelcachetechnology.Relativelyspeaking,theon-chipcachehasasmallcapacity,butitisveryflexibleandconvenient,whichgreatlyimprovestheperformanceofthemicroprocessor.On-chipcacheisalsocalledlevelonecache.Duetothehighclockfrequencyofhigh-endprocessorssuchas486and586,oncethefirstlevelcachemisses,theperformancewillbesignificantlydeteriorated.Inthiscase,themethodusedistoaddacacheinadditiontotheprocessorchip,whichiscalledasecondarycache.Thesecondarycacheisactuallytherealbufferbetweenthecpuandthemainmemory.Sincetheresponsetimeonthesystemboardismuchlowerthantherateofthecpu,itisimpossibletoachievetheidealrateofhigh-endprocessorssuchas486and586withoutthesecondarycache.Thecapacityofthesecond-levelcacheshouldgenerallybemorethananorderofmagnitudelargerthanthatofthefirst-levelcache.Inthesystemsettings,usersareoftenrequiredtodeterminewhetherthesecondarycacheisinstalledandthesize.Thesizeofthesecondarycacheisgenerally128kb,256kbor512kb.Inmicrocomputersabove486,256kbor512kbsynchronouscacheiscommonlyused.Theso-calledsynchronizationmeansthatthecacheandcpuusethesameclockcycleandworksynchronouslyatthesamerate.Comparedwithasynchronouscache,theperformancecanbeimprovedbymorethan30%.OneofthedevelopmenttrendsofthepcanditsserversystemisthattheCPUfrequencyisgettinghigherandhigher,thesystemarchitectureisgettingmoreandmoreadvanced,andtheimprovementofthestructureandaccesstimeofthemainmemorydramisslower.Therefore,thecachetechnologyisbecomingmoreandmoreimportant,andthecacheisgettingbiggerandbiggerinthepcsystem.ThemajorityofusershaveregardedcacheasanimportantindicatorforevaluatingandpurchasingPCsystems.

Opticaldrivecache

Opticalstoragedriveshaveinternalbuffersorcachememory.Thesebuffersareactualmemorychips,mountedonthecircuitboardofthedrive,whichmayprepareorstorelargerdatasegmentsbeforesendingdatatothePC.ThetypicalbuffersizeforCD/DVDis128KB,butthespecificdrivecanbelargeorsmall(usuallythemorethebetter).ArecordableCDorDVDdrivegenerallyhasalarge-capacitybufferof2MB-4MBormoretopreventbufferunderrunerrorsandatthesametimemaketherecordingworksmoothandconstantwriting.Generallyspeaking,thefasterthedrive,themorebuffermemorytohandlethehighertransferrate.

CD/DVDdriveswithbufferingorcachinghavemanyadvantages.BufferingcanensurethatthePCreceivesdataatafixedrate.Whenanapplicationrequestsdatafromthedrive,thedatamaybelocatedindifferentplacesscatteredonthedisc.Becausetheaccessrateofthedriveisrelativelyslow,thedrivehastosenddatatothePCatintervalswhenreadingdata.Thebufferofthedrivecanreadandpreparethecontentdirectoryoftheopticaldiscinadvanceunderthecontrolofthesoftware,thusspeedingupthefirstdatarequest.

ThelawforCD-ROMdrivetoreaddataistosearchinthecachefirst.Ifitisnotfoundinthecache,itwillsearchonthedisc.Thelarge-capacitycachecanreadmoredatainadvance,butinpracticalapplicationsInCD-ROM,DVD-ROMandotherreadoperations,thechanceofreadingrepeatedinformationisrelativelysmall.Mostoftheopticaldiscsaremoreoftenreadmorefilesatatime.,TheimportanceofcacheonDVD-ROMdrivesisnotreflected,somostoftheseproductsusesmallercachecapacity.CD-ROMgenerallyhasseveralkindsof128KB,256KB,512KB;andDVDgenerallyhas128KB,256KB,512KB,onlyindividualexternalDVDdriveadoptslargercapacitycache.

OnrecordersorCOMMBOproducts,cachingbecomesveryimportant.Whenburningadisc,thesystemwillpre-readthedatathatneedstobeburnedintothecache,andthenreadthedatafromthecacheforburning.Thecacheisthebridgebetweenthedataandtheburningdisc.Whenthesystemtransfersdatatothecache,itisinevitablethattherewillbeatransmissionpause.Forexample,whenburningalargenumberofsmall-capacityfiles,theharddiskreadingratemaynotkeepupwiththeburningrate,whichwillresultinthedatainthecache.Theinputandoutputarenotproportional.Ifthisstatecontinuesforaperiodoftime,itwillcauseallthedatainthecachetobeoutput,andnoinputwillbeobtained.Atthistime,itwillcauseacacheunderloaderror,whichwillleadtoafailuretoburnthedisc.Therefore,therecorderandCOMMBOproductswillusealargercachecapacity,coupledwiththeanti-engravingtechnology,canminimizetheprobabilityofburningabaddisk.Atthesametime,thecachecanalsocoordinatethedatatransmissionratetoensurethestabilityandreliabilityofdatatransmission.

Burnerproductsgenerallyhave2MB,4MB,8MB,andCOMBOproductsgenerallyhave2MB,4MB,8MBcachecapacity.Duetothelimitationofmanufacturingcost,thecachecannotbemadelargeenough.Buttherightamountofcachecapacityisstilloneofthekeystoconsiderwhenchoosingopticalstorage

NetworkCache

Concept

WWWisoneofthemostpopularapplicationsontheInternet,Itsrapidgrowthhascausednetworkcongestionandserveroverload,resultinginincreasedcustomeraccessdelays,andWWWservicequalityhasbecomeincreasinglyapparent.Cachetechnologyisconsideredtobeoneoftheeffectivewaystoreduceserverload,reducenetworkcongestion,andenhancethescalabilityofWWW.Itsbasicideaistousetheprincipleoftemporallocalityofcustomeraccess(TemproralLocality)tostorethecontentaccessedbycustomersintheCacheStoreacopy.Whenthecontentisaccessednexttime,itdoesnotneedtobeconnectedtotheresidentwebsite,butisprovidedbythecopykeptintheCache.

Webcontentcanbecachedontheclientside,proxyserver,andserverside.StudieshaveshownthatcachingtechnologycansignificantlyimproveWWWperformance,anditcanbringthefollowingbenefits:(1)Reducenetworktraffic,therebyreducingcongestion.

(2)Основните причини за забавяне на достъпа на клиенти са:

①Thecontentcachedintheproxyservercanbeobtaineddirectlyfromtheproxyinsteadoffromtheremoteserver.Reducedtransmissiondelay;

②Thecontentthatisnotcachedcanbequicklyobtainedbycustomersduetonetworkcongestionandthereductionofserverload.

(3) Тъй като част от съдържанието на заявката на клиента може да бъде получено от агента, натоварването на отдалечения сървър е намалено.

(4)Iftheremoteserverfailstorespondtotheclient'srequestduetoaremoteserverfailureornetworkfailure,theclientcanobtainacopyofthecachedcontentfromtheproxy,whichenhancestherobustnessoftheWWWservice.

Webcachingsystemwillalsobringthefollowingproblems:

(1) Съдържанието, получено от клиента чрез проксито, може да е остаряло.

(2)Ifacachefailureoccurs,theclient'saccessdelaywillincreaseduetotheadditionalproxyprocessingoverhead.Therefore,whendesigningaWebcachingsystem,weshouldstrivetomaximizethecachehitrateandminimizethecostoffailure.

(3)Theproxymaybecomeabottleneck.Therefore,anupperlimitofthenumberofservicecustomersandalowerlimitofserviceefficiencyshouldbesetforanagent,sothattheefficiencyofanagentsystemisatleastthesameastheefficiencyofaclientdirectlyconnectedtoaremoteserver.

AffecttheInternetaccessrate

TheprocessofaccessingthewebsiteiscompletedbytheHTTPprotocolbuiltontopoftheTCP/IPprotocol.SincetheclientsendsanHTTPrequest,thewaitingtimeexperiencedbytheuserismainlydeterminedbytheresponsetimeoftheDNSandthewebsite.ThedomainnameofthewebsitemustfirstberesolvedtoanIPaddressbytheDNSserver,andthedelayofHTTPisdeterminedbythenumberofround-triptimesbetweentheclientandtheserver.Theround-triptimereferstothetimetheclientwaitsfortheresponseofeachrequest.Theaverageround-triptimedependsonthreeaspects:

Забавяне насървъра на уебсайта

Thedelaycausedbythewebserveraccountsforthemainproportionoftheroundtriptime.WhenaserverreceivesmultipleconcurrentHTTPrequests,queuingdelaywilloccur.SincerespondingtoanHTTPrequestoftenrequiresmultipleaccesstothelocalharddisk,evenaserverwithasmallloadmayhaveadelayoftensorhundredsofmicroseconds.

Забавяне, въведено отрутери, шлюзове, прокси сървъри и защитни стени

ThereareusuallymultiplenetworksinthepathbetweentheclientandtheserverEquipment,suchasrouters,gateways,proxies,firewalls,etc.Theyallneedtostore/forwardthepassingIPpackets,soqueuingdelayandprocessingdelaywillbeintroduced.Whenthenetworkiscongested,thesedevicesmayevenlosepackets.Atthistime,theyhopethattheclientandserverwillresumecommunicationthroughanend-to-endprotocol.

Различни комуникационни връзкиСкорост на предаване на данни

Inawideareanetwork,fromonenetworkdevicetoanothernetworkdeviceThedatatransferratebetweentimeisanimportantfactorindeterminingtheround-triptime.Buttheroleofbasicbandwidthisnotasimportantaspeoplethink.AtestshowsthatwhenawebsiteusesT3speedtoaccesstheInternet,only2%ofwebpagesorobjectscanbeprovidedtotheclientatarateof64kbps,whichisobviouslyShowsthatbandwidthisnotthemostcriticalfactorinnetworkperformance.

TheInternetisextendingtoeverycorneroftheworld.Auser'srequesttoaservermaytraveladistanceof8,000kilometersto16,000kilometers.ThedelaycausedbythespeedoflightandthedelayofnetworkequipmentisthenetworkThemostfundamentalreasonforsuchslowness.

Кеширането на мрежата решава основния проблем

Sincethereasonthataffectsthenetworkspeediscausedbydistanceandthespeedoflight,theonlywaytospeedupWebaccessistoshortentheclientThedistancefromthewebsite.Bystoringthepagesandobjectsfrequentlyvisitedbyusersclosertotheuser,thedelayintroducedbythespeedoflightcanbereduced.Atthesametime,thedelayintroducedbyrouters,firewallsandproxiesisalsoreducedduetothereductionoflinksintherouting..

Thetraditionalsolutionistoestablishamirrorservertoachievethepurposeofshorteningthedistance.Butthismethodhasgreatshortcomings.Foracertainsite,itisimpossibletoestablishamirrorsiteclosetoeachusergroup.Itisevenmoreuneconomicaltousethismethodformostofthesites,anditwillbemanagedatthesametime.Andmaintainingmirrorsitesisaverydifficulttask.

NetworkcachingisanemergingnetworktechnologythatreducesInternettrafficandimprovesend-userresponsetime.Itsconceptcomesfromotherareasofcomputersandnetworks.Forexample,thereisacacheinthepopularIntel-basedCPUtoincreasetherateofmemoryaccess;variousoperatingsystemsalsousecachetoincreasetheratewhenaccessingdisks.;Distributedfilesystemsusuallyalsousecachingtoimprovethespeedbetweentheclientandtheserver.

Тип

Може да има две форми на кеширане на статични страници: Всъщност, основната разлика е дали самата CMS е отговорна за управлението на актуализацията на кеша на свързаното съдържание.

1.Staticcaching:Itisastaticpagethatgeneratescorrespondingcontentimmediatelywhennewcontentisreleased.Forexample,onMarch22,2003,aftertheadministratorenteredanarticlethroughthebackgroundcontentmanagementinterface,Andsynchronouslyupdatethelinksontherelevantindexpages.

2.Dynamiccaching:Afterthenewcontentisreleased,thecorrespondingstaticpageisnotgeneratedinadvanceuntilthecorrespondingcontentisrequested,ifthefront-endcacheservercannotfindthecorrespondingcache,itwillsendtheback-endcontentThemanagementserversendsarequest,andthebackgroundsystemgeneratesastaticpageofthecorrespondingcontent.Theusermaybeslowerwhenaccessingthepageforthefirsttime,butinthefuture,itwilldirectlyaccessthecache.

Недостатъци на статичното кеширане:

Complextriggerupdatemechanism:Thesetwomechanismsareverysuitablewhenthecontentmanagementsystemisrelativelysimple.Butforawebsitewithacomplicatedstructurediagramofanetworkcachesystem,thelogicalreferencerelationshipbetweenpagesbecomesavery,verycomplicatedproblem.Themosttypicalexampleisthatanewsitemshouldappearonthenewshomepageand3relatednewstopicsatthesametime.Inthestaticcachemode,eachnewarticleisposted,inadditiontothepageofthenewscontentitself,thesystemneedstobetriggered.Thebrowsergeneratesmultiplenewrelatedstaticpages,andthetriggeringoftheserelatedlogicoftenbecomesoneofthemostcomplexpartsofthecontentmanagementsystem.

Batchupdateofoldcontent:Thecontentpublishedbystaticcacheisdifficulttomodifythecontentofthepreviouslygeneratedstaticpage,sothatwhenusersvisittheoldpage,thenewtemplatewillnottakeeffectatall.

Inthedynamiccachemode,eachdynamicpageonlyneedstobeconcerned,andotherrelatedpagescanbeautomaticallyupdated,whichgreatlyreducestheneedtodesignrelatedpageupdatetriggers.

Thenetworkcachecanbeontheclientsideoronthenetwork,sowedividethecacheintotwocategories:browsercacheandproxycache.

Almostallbrowsershaveabuilt-incache,theyusuallyusetheclient'slocalmemoryandharddisktocompletethecachework,whileallowinguserstocontrolthesizeofthecachedcontent.Browsercachingisanextremecaseofnetworkcaching,becausethecachingislocatedlocallyontheclient.Usuallyaclienthasonlyoneuserorafewsharedcomputerusers,andtheharddiskspacerequiredbythebrowsercacheisusuallyintherangeof5MBto50MB.However,thebrowsercacheisdifficulttosharebetweenusers,andthecachesofdifferentclientscannotcommunicate,sothecontentandeffectsofthecachearequitelimited.

Proxycachingisanindependentapplicationlayernetworkservice,whichismorelikeE-mail,Web,DNSandotherservices.Manyuserscannotonlysharethecache,butalsoaccessthecontentinthecacheatthesametime.Enterprise-levelproxycachesgenerallyneedtobeconfiguredwithhigh-endprocessorsandstoragesystems,usingdedicatedsoftware,therequiredharddiskspaceisabout5MBto50GB,andthememoryis64MBto512MB.

Theproxyisbetweentheclientandthewebsiteserver.Insomecases,thisconnectionisnotallowed.Forexample,ifthewebsiteisinafirewall,theclientmustestablishaTCPconnectionwiththeproxy,andthenTheproxyestablishesaTCPconnectionwiththewebsiteserver.Theproxyactsasadatarelaybetweentheserverandtheclient.TheHTTPrequestsentbytheproxyisslightlydifferentfromthegeneralHTTPrequest,mainlyinthatitcontainsthecompleteURL,notjustthepathoftheURL.

ProxycacheHowitworks

Whentheproxycachereceivesarequestfromtheclient,itfirstcheckstherequestedcontentWhetherithasbeencached.Ifitisnotfound,thecachemustforwardtherequestonbehalfoftheclient,andwhenreceivingthefilefromtheserver,saveitinacertainformonthelocalharddiskandsendittotheclient.

Ifthecontentrequestedbytheclienthasbeencached,therearetwopossibilities:First,thecachedcontentisoutofdate,thatis,thecontentstoredinthecacheexceedsthepresettimelimit,orthewebsiteserverThewebpagehasbeenupdated.Atthistime,thecachewillasktheoriginalservertoverifythecontentinthecache.Eitherupdatethecontentorreturnan"unmodified"message;second,thecachedcontentisnew,thatis,itissynchronizedwiththecontentoftheoriginalwebsite.Thisiscalledacachehit.Atthistime,thecachewillimmediatelysendthesavedcontenttotheclient.

Whentheclient'srequestdoesnothit,itincreasestheprocessingtimeofcachestorageandforwarding.Inthiscase,doesproxycachingstillmakesense?Infact,theproxycachecanestablishmultipleconcurrentTCP/IPconnectionswiththewebsiteserveratthesametimetoobtainthecontentonthewebsiteinparallel.Theexistenceofthecachereducesthenumberofvisitstothewebsiteasawhole,andalsoreducesthenumberofqueuesontheserversideperunittime,sothequeuingdelayofconcurrentconnectionsismuchsmalleratthistime.Excellentcachingcanevenrealizetheprefetchingofrelatedlinksinwebpagestospeeduptheconnectionrate.

Прокси кеширанеСтратегия

Whentheoriginalserver’sfilesaremodifiedordeleted,howdoesthecacheknowhowit’ssaved?Isthecopyobsolete?TheHTTPprotocolprovidesbasicsupportforthecacheservice.Itenablesthecachetoquerytheoriginalserverwhetherafileischanged,andifthecachedcopyisoutofdate,itwillbeconditionallydownloaded.Onlywhentheoriginalserverfileexceedsthespecifieddate,anewfilewillbeissued.

However,theloadcausedbythesequeryoperationsonthewebserverisalmostthesameasthatofobtainingthefile,soitisimpossibletoperformsuchoperationswhentheclientinitiatesarequesttothecache.TheHTTPprotocolallowstheservertoselectivelyspecifythelifetimeofeachdocument,thatis,clearlyindicatetheeffectivelifecycleofafile,andtheshortlifetimemeans"don'tcacheit".Theretentiontimeofthecopycanbefixed,oritcanbecalculatedfromthesize,source,timetolive,orcontentofthefile.

Distributedcache

Thedistributedcachesystemistosolvethebottleneckbetweenthedatabaseserverandthewebserver.Ifawebsitehasalotoftraffic,thisbottleneckwillbeveryobvious,andeachdatabasequerywillconsumeaconsiderableamountoftime.Forwebsitesthatarenotupdatedveryquickly,wecanusestaticizationtoavoidexcessivedatabasequeries.Forwebsiteswhoseupdatespeedismeasuredinseconds,staticizationisnottooideal,andacachingsystemcanbeusedtobuildit.Ifonlyasingleserverisusedasacache,theproblemwillnotbetoocomplicated.Iftherearemultipleserversusedasacache,theloadbalancingofthecacheservermustbeconsidered.

UseMemcacheddistributedcachingservicetosavetheuser'ssessiondata,andachievethepurposeofeachfunctionalmodulebeingabletosharetheprivatedatainthissessionacrossprovincesandservers.EachprovinceusesoneserverastheMemcachedservertostorethedatainthesession.Ofcourse,multipleserverscanbeused,butthenumberofMemcachedserversineachprovincemustbethesame,soastoensuretheMemcachedclientTheoperationisthesamepieceofdatatoensuredataconsistency.

Добавяне, изтриване и промяна на данни за сесия

Memcachedclient,whenadding,deleting,andmodifyingsessioninformationdata,youmustnotonlyadd,delete,ModifytheMemcachedserverdatainthisprovince,andatthesametimedothesameoperationonMemcahedserversinotherprovinces,sothatuserscanaccessthesamesessiondatawhenaccessingthefunctionalmodulesofserversinotherprovinces.TheMemcachedclientserverlistusestheintranetIPofthelocalareanetwork(suchas:192.168.1.179)tooperatetheMemcahedserverinthisprovince,andthepublicIP(suchas:202.183.62.210)tooperatetheMemcaheserverinotherprovinces.

Четене на данни от сесията

ThelistofMemcachedclientserversforallmodulesofthesystemtoreadsessiondataaresettotheintranetIPoftheMemcachedserveraddressinthisprovinceToreadthesessiondatafromtheMemcahedserver.

Потвърждение на същата сесия

Usecookiestokeepthecustomerintouchwiththeserver.Atthebeginningofeachsession,aGUIDisgeneratedastheSessionIDandstoredinthecookieoftheclient.Thescopeisthetop-leveldomainname,sothatthesecond-levelandthird-leveldomainnamescansharethiscookie,andthesystemusesthisSessionIDtoconfirmwhetheritisthesameAconversation.

Уникалният ИД на данните за сесията

TheuniquekeyofthesessiondatastoredontheMemcachedserver.TheKey,whichistheuniqueIDofthesessiondata,isdefinedas:SessionID_Name,SessionIDistheSessionIDstoredintheclientcookie,andNameisthenameofthesessiondata.TheNameofeachsessiondatainthesamesessionmustbeunique,otherwisethenewsessiondatawilloverwritetheoldsessiondata.

Време на изтичане на сесията

Theexpirationofthesessionisachievedbycontrollingtheeffectivetimeofthecookie.ThesessiontimeissettotheSessionIDortheeffectivetimeinthecookie.AndeachtimetheSessionIDisaccessed,theeffectivetimeofthecookiemustbereset,sothattheeffectivetimeofthesessionreachedisthelongesttimefortheSessionIDvalueinthecookiebetweentwovisits.Iftheintervalbetweenthetwovisitsexceedstheeffectivetime,TheCookiesavedintheSessionIDwillbeinvalid,andanewSessionIDwillbegeneratedandstoredintheCookie,theSessionIDchanges,andthesessionends.InvalidationofsessiondataintheMemcachedserver,everytimesessiondataisaddedtotheMemcacheserver,theeffectivetimeissettooneday,whichis24hours,sothattheMemcachedserviceusesitsinternalmechanismtoclearit,andthereisnoneedtospecializethesessiondataintheprogram.Deleteoperation.ThevalidtimeofthedataintheMemcacheserverisonlylogical.Evenafter24hours,ifthememoryallocatedtotheMemcachedserviceissufficient,thedataisstillstoredinthememory,buttheMemcacheclientcannotreadit.OnlywhenthememoryallocatedtotheMemcachedserviceisnotenough,itwillcleanupuselessorrelativelyolddata,thatis,lazycleaning.

Howtoincreasethecache

CPUcache

CPUcacheisdividedintotwolevels:L1(firstlevelcache)andL2(secondlevelcache),whenWhentheprocessorwantstoreaddata,itmustfirstlookintheL1cache,thentheL2cache,andfinallythesystemmemory.Ifonedayyoufindthatyourcomputerisalotslower,andittakesafewminutestoentertheWindowsdesktop,youshouldcheckwhetherthefirstandsecondcachesoftheCPUareturnedon.IntheStandardCMOSSetup(standardCMOSsetting)intheBIOSsettings,twoitemsareusedtoturnonorturnoffthecache:whenCPUInternalCacheissettoEnable,turnonthefirstlevelbufferwithintheCPU,andifitissettoDisabl,itwillturnoff.Atthistime,thesystemperformanceWillbegreatlyreduced;ExternalCacheoptionistocontrolthesecond-levelbufferonthemotherboard,ifthereisasecond-levelcacheonthemotherboard,itshouldbesettoEnable.

Кеш на твърдия диск

Щракнете върху "Старт"/"Изпълни" на работния плот на компютъра, въведете "Msconfig", за да стартирате "Помощната програма за конфигуриране на системата", и след това изберете раздела "system.ini" Под елемента "Vcache" можете да коригирате кеша на твърдия диск според действителната ситуация на системата. Обикновено има три реда на съдържание inthisoption:ChunkSize=1024, MaxFileCache=10240иMinFileCache=10240;първият ред е стойността на единицата за четене и запис на буфер, вторият и третият ред са максималната и минималната стойност на буфера​на твърдия диск, а знакът за равенствоСледните стойности​могат да бъдат модифицирани, докато щракнете с десния бутон и изберете всеки ред, можете да го промените. нашата памет е 128MB, стойността на горните три реда е по-разумна, разбира се, можете също да я персонализирате. Ако не знаете как да зададете подходящата стойност на буфера, моля, "WindowsOptimizer" за помощ. В този софтуер има елемент "DiskCacheOptimizer" и можете лесно да зададете кеша с мишката; или позволява на "WindowsOptimizer" автоматично да ви помогне да оптимизирате настройките. Когато стойността на кеша на твърдия диск е достатъчно голяма, твърдият диск не трябва да чете и записва диска често, което може да удължи живота на твърдия диск и да увеличи скоростта на предаване на данни.

Освен това, настройването на "кеша на файловата система" на твърдия диск на "мрежов сървър" може да ускори достъпа на системата до твърдия диск, тъй като кешът на файловата система съхранява името на файла и пътя на твърдия диск, до който сте имали наскоро достъп. Колкото по-голям е кешът, толкова повече съдържание може да бъде съхранено. Ако щракнете върху "Контролен панел"/"Система"/"Производителност" "/"Файлова система"/"Твърд диск",променете"Основното използване на този компютър"от" Desktop"към"NetworkServer",можете да променитеоригиналните10KКеш паметта е увеличена до около 50K.

Кеширане на дискетно устройство и CD-ROM устройство

Като цяло скоростта на четене и запис на данни от дискетно устройство е сравнително ниска. Това е така, защото скоростта на диска не може да бъде твърде висока. Ние обаче можем да увеличим флопидисковото устройство. pe "Regedit" в полето "Старт"/"Изпълнение" на работния плот за стартиране на редактора на регистър, въведете HKEY-LOCAL-MACHINE\System\CurrentControlSet \Services\Class\FDC\0000,andcreateanewoneasForeFifo"DWORDvalue",setitsvalueto"0",sothatthefloppydrivehasbeensoft-speededup.Manypeopleknowthatright-clickonthe"MyComputer"icononthedesktop,select"Properties"/"Performance"/"FileSystem"/"CD-ROM", и задайте най-добрия метод за достъп на „Четирикратна скорост​​или по-висока“, плъзгач за допълнителни размери на кеша на Dragthead на максимална позиция, което може значително да подобри скоростта на четене на CD-ROM устройството. В допълнение към този метод можем също да зададем стойността на буфера в регистъра, като въведете регистъра и зададете CacheSize (размера на стойността на кеша) под HKEY-LOCAL-MACHINE\System\CurrentControlSet\Control\FileSystem\CDFSAnd Prefetch (размер на файла преди четене) се коригират ръчно, докато щракнете с десния бутон върху елемента, който ще изберете, можете да го промените.

This article is from the network, does not represent the position of this station. Please indicate the origin of reprint