Thefinestructureofatomicenergylevels
Usuallyinsomelighterelements,thissplitisfine,andforheavyelementsthissplitislarger.Thespinandorbitintheatominteract,anddifferentspindirectionscauseenergychanges.Inthecaseofsingleelectron,theelectronspinhastwoorientations.Generally,theenergylevelissplitintotwo,andthefinestructureoftheenergylevelisdouble;inthecaseoftwovalenceelectrons,thetotalspinS=0and1,thecorrespondingenergylevelisfineThestructureissingletandtriplet;inthesameway,inthecaseof3valenceelectrons,thefinestructureofenergylevelisdoubletandquartet,andsoon.Theenergylevelsplitdistanceofthefinestructureisproportionaltothesquareoftheatomicnumber,andproportionaltothesquareofthefinestructureconstantathatcharacterizesthefinestructure.TheenergylevelintervalofthefinestructureobeystheLandeintervalrule,andtheratiooftheadjacentenergylevelintervalisproportionaltothelargerJvalueofthetworelatedtotalangularmomentums,thatis,theJvalue.Fromthis,itcanbedeterminedwhethertheatombelongstoLScoupling.Thefinestructureoftheatomicenergylevelmakesthespectrallinesemittedbytheatomictransitionalsohaveafinestructure.Studyingthefinestructureofthespectrallinescanobtaininformationaboutthespin-orbitinteractionswithintheatoms.
Theeffectoffinestructuremixingrateonlaserperformance
ForalkalimetalvaporlasersP1/2andP3/2Theparticlenumberdistributionofthepumpingenergylevelcannotbeprocessedbythemethodofthermalequilibriumassumption.Itisnecessarytousethebidirectionalfinestructuremixingratetodescribeitsrelaxationprocess;whenthefinestructuremixingrateisfargreaterthanthespontaneousemissionrateandtheelectronicstatequenchingrateTheeffectonthelaserthresholdcanbeignored;effectiveabsorptionofthepumpinglightnotonlyrequiresthepumpingspectrumwidthtomatchtheatomicabsorptionspectrumwidth,butalsoasufficientfinestructuremixingratetoovercometheabsorptionsaturationeffect;inpractice,itcanbeachievedbyoptimizingthelasermodeThevolumeandtemperatureachievehigherlight-to-lightconversionefficiencyatalowerfinestructuremixingrate.
Effectonthelaserthresholdpumpingintensity
Theeffectofthefinestructuremixingrateofrubidiumvaporlaseronthethresholdintensity,wheretheabscissaisthefinestructuremixingrateΓ32tothespontaneousradiationrateA31,theordinateisthethresholdpumpingintensity.Thecalculationparametersareselectedasfollows:l=3cm,theaveragediameterofthelasermodeinthemediumw=0.6mm,T=110℃,ΔνD2=14GHz(filledwith7.98×104Pahelium),Δνpump=30GHz,ηmode=ηdel=Tr=0.95,Rp=1,Roc=0.2,whenthebuffergaspressureissmall,generallynegligibleQ21,Q31.
Γ32haslittleeffectonthethresholdpumpingintensity.ItcanbeseenthatwhenΓ32≥A21+Q21,1/(Γ32.τ21)canbeignoredcomparedto2exp[(-ΔE/(kT)](1.6at110℃),thisWhenIthhasnothingtodowithΓ32,thisapproximationisusuallytrueinpractice(filling1.33×104PaethaneΓ32=40.A31).
Effectonlaserefficiencyandparticlenumberdistribution
BecausetheP1/2andP3/2stateenergygapsofalkalimetalatomsareextremelynarrow,TheprincipleoffinebalancedeterminesthattheP3/2energylevelwillaccumulatealargenumberofparticlesandcannotbeemptied(in110℃thermalequilibriumstaten3/n2is161.0%ofpotassium,82.0%ofrubidium,24.9%ofcesium).Theformationofaccumulationandreversalofthenumberofparticlesisunfavorable.
DescribethedeviationofthenumberofparticlesbetweentheenergylevelsofP1/2andP3/2Thedegreeofthermalequilibrium.Whenγ=1,itisthethermalequilibriumdistribution.Theeffectsofthefinestructuremixingrateonthelaserefficiencyandparticlenumberdistributionarecalculatedseparately,andthepumpingpowerisPp=100W,whereηopt-optoptical-opticalconversionefficiency,ηabsorbistheabsorptionefficiencyofthepumplightincidentontheendfaceofthemedium,ηopt-absisthelaserefficiencyrelativetotheabsorptionofthepumplight,andhasthefollowingrelationship:ηopt-opt=ηdel.ηabsorb.ηopt-abs,isthedifferenceinthenumberofparticlesbetweenpumpingenergylevels.p>
WithΓ32Increases,Δn13alsoincreases,sothattheabsorptionefficiencyofthemediumforpumpinglightηabsorbalsoincreases,whichisrelativetotheabsorptionofpumpingThelaserefficiencyoflightηopt-abshasnothingtodowithΓ32,andalwaysmaintainsahighefficiencycloseto90%(Γ32issmall,thedecreaseofηopt-absiscausedwhenthespontaneousemissioncannotbeignoredcomparedwiththelaseremissionrate).ThisistheembodimentofDPAL’shighquantumefficiency.Fromthis,itcanbeconcludedthattheeffectiveabsorptionofpumplightbyDPALnotonlyrequiresthepumpingspectrumwidthtomatchtheatomicabsorptionspectrumwidth,butalsoasufficientfinestructuremixingratetoeffectivelyreduceP3/2energylevelrelaxestotheP1/2energyleveltoavoidabsorptionsaturation.γisalwaysgreaterthan1andkeepsapproaching1withtheincreaseofΓ32,onlywhenΓ32→∞isP3Thenumberofparticlesat/2andP1/2energylevelsisthethermalequilibriumdistribution,andwhenΓ32issmall,itdeviatesseriouslyfromthethermalequilibriumstate.Therefore,iftheprocessingmethodofthethermalequilibriumassumptioninthequasi-three-levelsolid-statelaserisadopted,alargeerrorwillbecaused.Thisisbecausethenon-radiativerelaxationratebetweensimilarenergylevelsinthesolidmediumismuchhigherthanthespontaneousandstimulatedemissionrates.,Andthenon-radiativerelaxationrateinDPALisontheorderofpumpabsorptionandlaseremissionrate.
Absorptionsaturationeffectanditssolution
WhenΓ32=300.A31Theinfluenceofpumpingpoweronlaserperformance,andotherparametersarethesameasabove.Withthecontinuousincreaseofpumpingpower,thelimitedfine-structuremixingratecannoteffectivelytransferthenumberofpumpedupper-levelparticles.WhenΔn13→0,aseverepumpingsaturationeffectappears,whichleadstotheoverallThelight-to-lightconversionefficiencydropssharply.Itcanbeseenthatasthepumpingpowerincreases,therequiredfine-structuremixingrate,thatis,thebuffergaspressure,willalsocontinuetoincreaseaccordingly.However,inpractice,thepressureofthebuffergasshouldnotbetoohigh.Thiswillcauseseriouselectronicstatequenchingeffects.Ontheotherhand,itwillnotbeconducivetothehigh-powercalibrationandamplificationofDPAL,suchaswhenthepumpingpowerisintheorderof10,000watts.Inordertoobtain70%efficiency,itisnecessarytochargeabout3.039×107Paofethane,whichisunrealisticfortheactuallasersystem.
Calculationsshowthatbyincreasingthevolumeofthelasermodeandadjustingthetemperaturetoincreasetheparticlenumberdensity,theeffectiveabsorptionofthepumpinglightcanbeachievedundertheconditionofasmallerfinestructuremixingrate,andahigherlight-to-lightconversioncanbeobtained.Efficiency,whenΓ32=300.A31Theinfluenceoftemperatureandmediumlengthonlaserefficiency.Forcomparison,thepumpingpowerisselectedasPp=1000W,whenl=3cm,T=110At℃,ηopt-opt<10%,thecalculationresultsshowthatthelaserefficiencyhasbeensignificantlyimprovedwiththeincreaseoftemperatureandmediumlength.
Preliminarystudyonthefinestructureoftheseasurfaceheightalongtheorbitanditsapplicationtechnology
Introducedtwohigh-precisionstructuresoftheseasurfaceheightalongtheorbitinthefrequencydomainandthemulti-scaledomain,andthenAnewmethodforcalculatingtheaverageseasurfaceheightandsealevelanomalyusingthehigh-precisionstructureoftheseasurfacealongtheorbitisproposed.Finally,thespectrumandmulti-scaledecompositionoftheaverageseasurfaceheightandthesealevelanomalyalongtheorbitarefurtherdiscussed,aswellastheirtime-dependentdecomposition.Changecharacteristics.
Calculationtechnologyofaverageseasurfaceheightandsealevelanomaly
Fromthedefinitionofthehigh-precisionstructureoftheseasurfaceheightmeasurementalongtheorbit,theseasurfaceheightcanberegardedasacertainlinearElementsinspace.Ifthelinearspaceisbasedonthetrigonometricfunctionsystem,thesealevelheightalongtheorbitcanbeexpressedasalinearcombinationoftrigonometricfunctionbasestoobtaintheFouriertransformofthesealevelalongtheorbit,thatis,thefrequencydomainfinestructure.Ifthelinearspaceisbasedonamulti-scalewaveletbase,thesealevelalongtheorbitcanbeexpressedasalinearcombinationofmulti-scalewaveletbases,andthesealevelalongtheorbitcanbedecomposedatmultiplescalestoobtainamulti-scalefinestructure.
Averagesealevelcalculationtechnology
Usually,whencalculatingtheaveragesealevel,thesealevelmeasuredindifferentweeksisregardedasastatisticalsamplingoftheaveragesealevel.Similarly,thefinestructureoftheseasurfacealongtheorbitindifferentweekscanalsoberegardedasastatisticalsamplingofthehighfinestructureoftheaverageseasurfacealongtheorbitinthefrequencydomainandmulti-scaledomain.Fromthelinearspaceadditivity,thefinestructureoftheaverageseasurfaceheightalongtheorbitisequaltotheweightedaverageofthehighfinestructureoftheseasurfacealongtheorbitindifferentcircumferences.Knowingthefinestructureoftheaveragesealevelalongthetrack,theaveragesealevelalongthetrackcanbereconstructed,andthenthegridaveragesealevelcanbecalculated.Themainstepstocalculatetheaverageseaheightusingthehigh-precisionstructureoftheseasurfacealongtheorbit:
1.Calculatethefinestructureofthesealevelheightalongtheorbitindifferentcircumferences;
2,ifthefinestructureisIfitisdescribedinamulti-scaleformat,thenperformsingularityanalysistodetectandsuppressitssingularity;
3.Use(eliminateorsuppressthesingularity)theheightoftheseaalongtheorbitofdifferentcircumferencesCalculatethehigh-precisionstructureoftheaverageseasurfacealongtheorbitwithfinestructure;
4.Reconstructtheaverageseasurfaceheightalongtheorbitfromthehigh-definitionstructureoftheaverageseasurfacealongtheorbit;
5.Theaverageseasurfaceheightalongtherailisadjustedattheintersectionpoint,andtheaverageseasurfaceheightalongtherailaftertheadjustmentiscalculated;
6.Thegridaveragesealevelheightiscalculatedfromtheaverageseasurfaceheightalongtherailaftertheadjustment.
Reconstructedfromthefrequencydomainfinestructureoftheremainingaveragesealevelalongthe53rdarcoftheTOPEX/Poseidonsatellite.Itcanbeseenfromthecomparisonthattheresultsoftheaverageseasurfaceheightalongtheorbitreconstructedfromthefrequencydomainfinestructureandthemulti-scalefinestructureareslightlydifferent.Theaccuracyofthedetailedstructureisrelativelyhigh.
Sealevelanomalycalculationtechnology
Themainstepsforcalculatingsealevelanomaliesusingthefinestructureofsealevelheightmeasurementalongthetrack:
1.DifferentcalculationsElevatethefinestructureoftheseasurfacealongtheorbit;
2.Ifthefinestructureisdescribedinamulti-scaleform,performsingularityanalysistodetectandeliminateorsuppressitssingularity;
2.p>
3.Calculatethefinestructureoftheaveragesealevelalongthetrackfromthefinestructureofthesealevelheightmeasuredindifferentweeks(eliminateorsuppressthesingularity);calculatethefinestructureoftheaveragesealevelalongthetrackfromthefinestructureoftheaverageseaheightalongthetrackAndcarryouttheintersectionadjustment;recalculatethefinestructureoftheaverageseasurfaceheightalongtheorbitfromtheadjustedaverageseasurfaceheight;Calculatethefinestructureofthesealevelanomalyalongtherailbyusingthehigh-precisionstructureoftheheightmeasurementsurfacealongtheorbitandtheaveragesealevelaftertheadjustment;
5.ReconstructionofthefinestructurefromthesealevelanomalyalongtherailThesealevelanomalyalongtherail;
6.Calculatethegridsealevelanomalyfromthesealevelanomalyalongtherail.Thesealevelanomalyalongtheorbitofthe53rdarcoftheTOPEX/Poseidonsatellitefrom120to232weeksisgivenagraphevery5weeks(thetimesequenceisfromtoptobottom,fromlefttoright).Theunitofabscissais(°)andtheunitofordinateism.
Becauseofthehighaccuracyofthehigh-precisionstructureoftheaverageseasurfacealongtheorbit,thesealevelanomalyalongtheorbitalwaysswingsaroundzero,whichintuitivelyreflectsthecharacteristicsofthesealevelchangeovertime.Itcanbeseenthat,comparedwiththesealevelanomaliesreconstructedfromthefrequencydomainfinestructure,thedetailedfeaturesofthesealevelanomaliesreconstructedfromthemulti-scalefinestructurearemoreprominent.
First,calculatethefinestructureoftheseaheightalongtheorbitondifferentcircumferences,soastofullytakeintoaccountthedetailedstructureoftheseaheightalongtheorbit,andavoidprocessingallhigh-frequencyinformationasnoise.Thencalculatethefinestructureoftheaverageseasurfaceheightalongtheorbitbymeasuringthehigh-precisionstructureoftheseasurfaceheightalongtheorbitofdifferentcircumferences.Thisstepisessentiallytocalculatethefinestructureoftheaverageseasurfaceheightalongtheorbitinthefrequencydomainormulti-scaledomain.Theprocessofreconstructingtheaverageseasurfaceheightalongtheorbitfromthehigh-precisionstructureoftheaverageseasurfacealongtheorbitisessentiallytorecovertheaverageseasurfaceheightalongtheorbitfromthefrequencydomainormulti-scaledomain.Thesealevelanomalyalongtheorbitisreconstructedfromthefinestructureoftheweeklysealevelanomaly,insteadofdirectlysubtractingtheaveragesealevelfromthesealevelalongtheorbitasintheconventionalmethod,soastofullyconsiderthespatialandtemporalchangesofsealevel.Differencesincharacteristics.