Home Tekniikka Numerolaskelmat

Numerolaskelmat



ResearchFields

Accordingtothetypesofmathematics,theresearchfieldsofnumericaloperationsincludenumericalapproximation,numericaldifferentiationandnumericalintegration,numericalalgebra,optimizationmethods,numericalsolutionsofordinarydifferentialequations,andintegralsEquationnumericalsolution,partialdifferentialequationnumericalsolution,computationalgeometry,computationalprobabilityandstatistics,etc.Withthewidespreadapplicationanddevelopmentofcomputers,manyproblemsinthefieldofcomputing,suchascomputationalphysics,computationalmechanics,computationalchemistry,computationaleconomics,etc.,canbeattributedtonumericalcomputationalproblems.

Tärkeät ominaisuudet

Numeerisilla laskelmilla on seuraavat viisi tärkeää ominaisuutta:

1.Theresultsofnumericalcalculationsarediscreteandmusthaveerrors.Thisisanumericalvalue.Themaincharacteristicsofthedifferencebetweenthecalculationmethodandtheanalyticalmethod.

2.Payattentiontothestabilityofcalculation.Controllingthegrowthmomentumoferrorsandensuringthestabilityofthecalculationprocessisoneofthecoretasksofnumericalcalculationmethods.

3.Payattentiontofastcalculationspeedandhighcalculationaccuracyareimportantfeaturesofnumericalcalculation.

4. Kiinnitä huomiota rakentamisen kestävyyteen.

5.Numeeriset laskelmat käyttävät pääasiallisesti äärellisen likimäärän ajatusta virheellisten laskelmien suorittamiseen.

Numericalintegration

Numericalintegrationisanumericalmethodtofindtheapproximatevalueofadefiniteintegral,thatis,thediscreteorweightedaverageapproximatevalueofafinitenumberofsamplingvalues​​oftheintegrandreplacesthevalueofthedefiniteintegral.Whencalculatingthedefiniteintegralofafunction,inmostcases,theoriginalfunctionoftheintegrandisdifficulttoexpresswithelementaryfunctions.Therefore,therearefewopportunitiestocalculatethedefiniteintegralwiththehelpoftheNewton-Leibnizformulaofcalculus..Inaddition,theintegrandfunctioninmanypracticalproblemsisoftenatabularfunctionorotherformsofdiscontinuousfunctions.Thedefiniteintegralofthistypeoffunctioncannotbesolvedbytheindefiniteintegralmethod.Fortheabovereasons,thetheoryandmethodofnumericalintegrationhasalwaysbeenthebasicsubjectofcomputationalmathematicsresearch.Mathematicsmasterswhohavemadeoutstandingcontributionstocalculus,suchasI.Newton,L.Euler,C.F.Gauss,etc.havealsomadetheirowncontributionsinthefieldofnumericalintegrationandlaiditstheoreticalfoundation.

ConstructingNumericalIntegration

Themostcommonmethodforconstructingnumericalintegrationformulaistoreplacetheintegrandfunctionwithn-thorderinterpolationpolynomialontheintegrationinterval.TheresultingquadratureformulaiscalledinterpolationTypequadratureformula.Especiallywhenthenodesareequallyspaced,itiscalledtheNewton-Coatesformula.Forexample,thetrapezoidalformulaandtheparabolicformulaarethemostbasicapproximateformulas.Buttheiraccuracyispoor.Romberg'salgorithmisamethodofweightedaverageoftheapproximatevalueofthetrapezoidalformulaintheprocessofsuccessivelydividingtheintervalintohalftoobtainamoreaccurateintegralapproximatevalue.Ithasconciseformulas,accuratecalculationresults,convenientuse,goodstability,etc.Advantages,soRomberg'squadratureformulashouldbeusedinthecaseofequidistance.Whencalculatingwithunequaldistancenodes,theGaussianquadratureformulaiscommonlyused.Underthesamenumberofnodes,theaccuracyishigh,thestabilityisgood,andtheinfiniteintegralcanbecalculated.Numericalintegrationisalsoanimportantbasisforthenumericalsolutionofdifferentialequations.Manyimportantformulascanbederivedusingnumericalintegralequations.

This article is from the network, does not represent the position of this station. Please indicate the origin of reprint
TOP