Home Tekniikka palata

palata



Konsepti

Regressioanalyysi onmatemaattinen malli. Kun riippuvalla muuttujalla ja riippumattomalla muuttujalla on lineaarinen suhde, se onerityinen lineaarinen malli.

Yksinkertaisin tapaus on yksimuuttujalineaarinen regressio, joka koostuu riippumattomasta muuttujasta ja riippuvaisesta muuttujasta, jotka ovat suurin piirtein lineaarisesti sukua; malliY=a+bX+ε(Xisriippumaton muuttuja,Yissyymuuttuja,εon satunnainen virhe).

Usuallyassumethatthemeanvalueoftherandomerroris0,andthevarianceisσ^2(σ^2﹥0,σ^2hasnothingtodowiththevalueofX).Ifitisfurtherassumedthattherandomerrorfollowsanormaldistribution,itiscalledanormallinearmodel.Generally,iftherearekindependentvariablesand1dependentvariable,thevalueofthedependentvariableisdividedintotwoparts:onepartisaffectedbytheindependentvariable,thatis,expressedasitsfunction,thefunctionformisknownandcontainsunknownparameters;theotherpartisdeterminedbyOtherunconsideredfactorsandrandomeffectsarerandomerrors.

Whenthefunctionisalinearfunctionwithunknownparameters,itiscalledalinearregressionanalysismodel;whenthefunctionisanonlinearfunctionwithunknownparameters,itiscalledanonlinearregressionanalysismodel.Whenthenumberofindependentvariablesisgreaterthan1,itiscalledmultipleregression,andwhenthenumberofdependentvariablesisgreaterthan1,itiscalledmultipleregression.

Regressioanalyysin sisältö

Regressioanalyysin pääsisältö on seuraava:

①Startingfromasetofdata,determinethequantitativerelationshipbetweencertainvariables;Thatis,amathematicalmodelisestablishedandunknownparametersareestimated.Usuallytheleastsquaremethodisused.

②Testaasuhteiden luotettavuus.

③Intherelationshipbetweenmultipleindependentvariablesaffectingadependentvariable,judgewhethertheindependentvariablehasasignificantimpact,andselectthesignificantimpactintothemodel,andeliminateinsignificantvariables.Stepwiseregression,forwardregression,andbackwardregressionareusuallyused.

④Usetherequiredrelationshiptopredictorcontrolacertainprocess.

Theapplicationofregressionanalysisisveryextensive,andtheuseofstatisticalsoftwarepackagescanmakevariousalgorithmsmoreconvenient.

Regression tyypit

Regression päätyypit ovat:lineaarinen regressio, käyräviivainen regressio, binääriloginen regressio ja moniloginen regressio.

Applicationofanalysis

Correlationanalysisstudiesthecorrelationbetweenphenomena,thedirectionandclosenessofcorrelation,andgenerallydoesnotdistinguishbetweenindependentvariablesordependentvariables.Regressionanalysisistoanalyzethespecificformsofcorrelationbetweenphenomena,determinethecausalrelationship,andusemathematicalmodelstoexpressthespecificrelationship.Forexample,fromthecorrelationanalysis,wecanknowthatthe"quality"and"usersatisfaction"variablesarecloselyrelated,butwhichvariablebetweenthesetwovariablesisaffectedbywhichvariable,andthedegreeofinfluence,requiresregressionanalysisMethodtodetermine.

Generallyspeaking,regressionanalysisistodeterminethecausalrelationshipbetweendependentvariablesandindependentvariables,establisharegressionmodel,andsolvethevariousparametersofthemodelbasedonthemeasureddata,andthenevaluatewhethertheregressionmodelisItcanfitthemeasureddatawell;ifitcanfitwell,furtherpredictionscanbemadebasedontheindependentvariables.

Forexample,ifyouwanttostudythecausalrelationshipbetweenqualityandusersatisfaction,inapracticalsense,productqualitywillaffectusersatisfaction,sosetusersatisfactionasthedependentvariableandrecorditasY;Qualityistheindependentvariable,denotedasX.AccordingtothescatterplotinFigure8-3,thefollowinglinearrelationshipcanbeestablished:

Y=A+BX+§

where:AandBareundeterminedparameters,andAisregressionTheinterceptofthestraightline;Bistheslopeoftheregressionline,whichrepresentstheaveragechangeofYwhenXchangesbyoneunit;§istherandomerrortermthatdependsonusersatisfaction.

LinearregressioncanbeeasilyimplementedintheSPSSsoftware.Theregressionequationisasfollows:

y = 0,857+0,836xTheintercepTegressionLineOnTheyAxisis0.857AndTheSlopeis0.836, se, forveryOnOnPointInProvementInquality, käyttäjättyypintainen

Theexampleshownaboveisasimplelinearregressionproblemofoneindependentvariable.Duringdataanalysis,thiscanalsobeextendedtomultipleregressionofmultipleindependentvariables.PleaserefertothespecificregressionprocessandmeaningRefertorelevantstatisticsbooks.Inaddition,intheSPSSresultoutput,R2,FtestvalueandTtestvaluecanalsobereported.R2isalsocalledthecoefficientofdeterminationoftheequation,whichindicatesthedegreeofinterpretationofthevariableXtoYintheequation.ThevalueofR2isbetween0and1.Thecloserto1,thestrongertheinterpretationabilityofXtoYintheequation.R2isusuallymultipliedby100%toexpressthepercentageofYchangeexplainedbytheregressionequation.TheFtestisoutputthroughtheanalysisofvariancetable,andthesignificancelevelisusedtotestwhetherthelinearrelationshipoftheregressionequationissignificant.Generallyspeaking,significancelevelsbelow0.05aremeaningful.WhentheFtestpasses,itmeansthatatleastoneoftheregressioncoefficientsintheequationissignificant,butnotallregressioncoefficientsaresignificant,soaTtestisneededtoverifythesignificanceoftheregressioncoefficients.Similarly,theTtestcanbedeterminedbythesignificanceleveloralook-uptable.Intheexampleshownabove,themeaningofeachparameterisshowninTable1-1.

Taulukko 1-1linearregressionequationtest

indeksipalautus

>

Arvo

Näkyvyystaso

>

Merkitys

>

R

>

0,89

"Laatu" selittää89 %"Käyttäjätyytyväisyyden" muutoksen astetta

>

F

>

276,82

>

0,001

Regressioyhtälön lineaarinen suhde onmerkittävä

>

T

>

16.64

>

0,001

Regressioyhtälön kerroin onmerkittävä

This article is from the network, does not represent the position of this station. Please indicate the origin of reprint
TOP