Home Technique superconductor

superconductor



Background

Thediscoveryofsuperconductorsisinseparablefromlow-temperatureresearch.Inthe18thcentury,duetothelimitationsofcryogenictechnology,peoplethoughtthattherewere"permanentgases"thatcouldnotbeliquefied,suchashydrogen,helium,etc.In1898,theBritishphysicistDewarmadeliquidhydrogen.In1908,ProfessorKamerlinHonnesoftheLeidenCryogenicLaboratoryofLeidenUniversityintheNetherlandssuccessfullyliquefiedthelast"permanentgas"-helium,andobtained1.15-4.25byreducingthevaporpressureofliquidhelium.K'slowtemperature.Thebreakthroughinlow-temperatureresearchhaslaidthefoundationforthediscoveryofsuperconductors.

Attheendofthe19thcenturyandthebeginningofthe20thcentury,thereweredifferentopinionsaboutthechangeofmetalresistancenearabsolutezero.Oneviewisthattheresistanceofpuremetalsshoulddecreasewithdecreasingtemperatureanddisappearatabsolutezero.Anotherview,representedbyWilliamThomson(BaronKelvin),believesthatasthetemperaturedecreases,theresistanceofametalreachesaminimumvalueandbecomesinfiniteduetoelectronscondensingonthemetalatom.

InFebruary1911,KamerlinOnnis,whomasteredliquidheliumandcryogenictechnology,discoveredthatbelow4.3K,theresistanceofplatinumremainsaconstant,insteadofpassingaminimumvalue.Increase.Therefore,KamerlinOnnisbelievesthattheresistanceofpureplatinumshoulddisappearatthetemperatureofliquidhelium.Inordertoverifythisconjecture,KamerlinOnnischosemercury,whichiseasiertopurify,astheexperimentalobject.First,KamerlinOnniscoolsthemercurytominus40°Ctosolidifythemercuryintoalinearshape;thenusesliquidheliumtoreducethetemperaturetoaround4.2K,andappliesavoltageacrossthemercurywire;whenthetemperatureisslightlylowerthan4.2AtK,theresistanceofmercurysuddenlydisappears,showingasuperconductingstate.

Basiccharacteristics

Superconductorshavethreebasiccharacteristics:completeconductivity,completediamagnetism,andfluxquantization.

Completeconductivity

Completeconductivityisalsocalledzeroresistanceeffect,whichreferstothephenomenonthattheresistancesuddenlydisappearswhenthetemperaturedropsbelowacertaintemperature.

Completeconductivityissuitablefordirectcurrent.Whenthesuperconductorisinanalternatingcurrentoralternatingmagneticfield,therewillbeAC​​loss,andthehigherthefrequency,thegreatertheloss.AClossisanimportantproblemthatneedstobesolvedinthepracticalapplicationofsuperconductors.Atthemacrolevel,theAClossiscausedbythedifferencebetweentheinducedelectricfieldandtheinducedcurrentdensitygeneratedinsidethesuperconductingmaterial;atthemicrolevel,theAClossiscausedbythequantizedmagneticfluxlines.Causedbystagnation.AClossisanimportantparametertocharacterizetheperformanceofsuperconductingmaterials.IftheAClosscanbereduced,thecoolingcostofthesuperconductingdevicecanbereducedandthestabilityoftheoperationcanbeimproved.

Completelydiamagnetic

Meisnereffect(2photos)

Completelydiamagnetic,alsoknownasMeissnereffect,"diamagnetic"Referstothephenomenonthatthemagneticfieldlinescannotpassthroughthesuperconductorwhenthemagneticfieldstrengthislowerthanthecriticalvalue,andtheinternalmagneticfieldofthesuperconductoriszero."Complete"meansthattheorderofthetwooperationsofreducingthetemperaturetothesuperconductingstateandapplyingthemagneticfieldcanbereversed.Thereasonforthecompletediamagnetismisthatthesurfaceofthesuperconductorcanproducealosslessdiamagneticsuperconductingcurrent.Themagneticfieldgeneratedbythiscurrentcancelsthemagneticfieldinsidethesuperconductor.

Thezeroresistanceofsuperconductorsiswellknown,butsuperconductorsarenotequivalenttoidealconductors.Startingfromtheelectromagnetictheory,thefollowingconclusionscanbederived:iftheidealconductorisfirstcooledtoalowtemperatureandthenplacedinamagneticfield,theinternalmagneticfieldoftheidealconductoriszero;butiftheidealconductorisplacedinthemagneticfieldfirst,andthencooledtoalowtemperature,theidealThemagneticfieldinsidetheconductorisnotzero.Forsuperconductors,thetwooperationsofloweringthetemperaturetothesuperconductingstateandapplyingthemagneticfield,regardlessoftheirorder,theinternalmagneticfieldofthesuperconductorisalwayszero.Thisisthecoreofcompletediamagnetismandthekeytothedifferencebetweensuperconductorsandidealconductors.

Fluxquantization

FluxquantizationisalsoknownastheJosephsoneffect,whichmeansthatwhentheinsulatinglayerbetweentwosuperconductorsisthintothesizeofanatom,electronpairscanpassthroughtheinsulationThephenomenonthatthelayergeneratestunnelcurrent,thatis,superconductorcurrentcanbegeneratedinthesuperconductor-insulator-superconductorstructure.

TheJosephsoneffectisdividedintotheDCJosephsoneffectandtheACJosephsoneffect.ThedirectcurrentJosephsoneffectmeansthatelectronpairscanformasuperconductingcurrentthroughtheinsulatinglayer.TheACJosephsoneffectmeansthatwhentheappliedDCvoltagereachesacertainlevel,inadditiontotheDCsuperconductingcurrent,thereisalsoACcurrent.Thesuperconductorisplacedinamagneticfieldandthemagneticfieldpenetratestheinsulatinglayer.Themaximumsuperconductingcurrentofthesuperconductingjunctionfollowstheoutside.Thesizeofthemagneticfieldchangesregularly.

Criticalparameters

Superconductorshavethreecriticalparameters:criticaltransitiontemperatureTc,criticalmagneticfieldstrengthHc,criticalCurrentdensityJc.Whenthesuperconductorisinthreecriticalconditionsatthesametime,itshowssuperconductivity.

(1)CriticaltransitiontemperatureTc:WhenthetemperatureislowerthanthecriticaltransitiontemperatureTc,thematerialisinasuperconductingstate;exceedingthecriticaltransitionAttemperatureTc,thesuperconductorreturnsfromthesuperconductingstatetothenormalstate.

(2)CriticalmagneticfieldstrengthHc:WhentheexternalmagneticfieldstrengthexceedsthecriticalmagneticfieldstrengthHc,thesuperconductorisrestoredtothenormalstatefromthesuperconductor.ThecriticalmagneticfieldstrengthHcisrelatedtotemperature,andtherelationshipisasfollows:

(3)CriticalcurrentdensityJc:WhenthecurrentdensitythroughthesuperconductorexceedsthecriticalcurrentdensityJc,thesuperconductorisrestoredtothenormalstatefromthesuperconductor.ThecriticalcurrentdensityJcisrelatedtotemperatureandmagneticfieldstrength.

Theoreticalexplanation

Inordertoclarifythemechanismofsuperconductors,scientistshaveproposedavarietyoftheories,including:theLondonequationthatwasproposedin1935todescribetherelationshipbetweensuperconductingcurrentandweakmagneticfield;Pippardtheoryproposedin1950~1953toperfecttheLondonequation;GL(Ginzburg-Landau)theoryproposedin1950todescribetherelationshipbetweensuperconductingcurrentandstrongmagneticfield(closetothecriticalmagneticfieldstrength);proposedin1957,ExplaintheBCS(Bardeen-Cooper-Schrieffer)theoryofthefirsttypeofsuperconductorfromthemicroscopicmechanism.AmongthemoreimportanttheoriesareBCStheoryandGLtheory.

BCStheory

TheBCStheoryisbasedonthenear-freeelectronmodelandbasedontheweakelectron-phononinteraction.TheproponentsofthetheoryareJ.Bardeen,Cooper,andJ.R.Schrieffer.

TheBCStheorybelievesthatelectronswithoppositespinandmomentuminametalcanpairtoformaCooperpair,andtheCooperpaircanmovewithoutlossinthecrystallatticetoformasuperconductingcurrent.ForthereasonfortheCooperpair,theBCStheoryhasmadethefollowingexplanation:whenelectronsmoveinthelattice,theywillattractthepositivechargesontheneighboringlatticepoints,causinglocaldistortionofthelatticepoints,formingalocalhighpositivechargearea.Thislocalizedhighpositivechargeregionwillattractelectronswithoppositespins,andpairwiththeoriginalelectronswithacertainbindingenergy.Atverylowtemperatures,thisbindingenergymaybehigherthantheenergyofthelatticeatomicvibration,sothattheelectronpairwillnotexchangeenergywiththelattice,andthereisnoresistance,formingasuperconductingcurrent.

TheBCStheoryprovidesagoodmicroscopicexplanationofthereasonsfortheexistenceofthefirsttypeofsuperconductors,andtheproponentsofthetheoryBarding,Cooper,andSchrieverwontheNobelPrizeinPhysicsin1972.However,theBCStheorycannotexplaintheexistenceofthesecondtypeofsuperconductor,especiallytheMcMillanlimittemperature(thecriticaltransitiontemperatureofasuperconductorcannotbehigherthan40K)basedontheBCStheory,whichhaslongbeenbrokenbythesecondtypeofsuperconductor.

GLtheory

GLtheoryisaphenomenologicaltheoryproposedonthebasisofLandau'ssecond-orderphasetransitiontheory.TheproponentsofthetheoryareGinzburgandLandau.

TheGLtheoryisbasedonthefollowingconsiderations:whentheexternalmagneticfieldstrengthisclosetothesuperconductor'snearbymagneticfieldstrength,thesuperconductor'scurrentdoesnotobeythelinearlaw,andthezero-pointvibrationenergyofthesuperconductorcannotbeignored.

ThegreatestcontributionofGLtheoryistoforeseetheexistenceofthesecondtypeofsuperconductor.StartingfromtheGLtheory,theconceptofsurfaceenergyκcanbederived.Whenthesurfaceenergyofthesuperconductorisκ,itisthefirsttypeofsuperconductor;whenthesurfaceenergyofthesuperconductorisκ,itisthesecondtypeofsuperconductor.

Classification

Theclassificationmethodsofsuperconductorsareasfollows:

(1)Accordingtotheresponseofthematerialtothemagneticfield:thefirsttypeofsuperconductorandthesecondtypeofsuperconductor.Fromtheperspectiveofmacro-physicalproperties,thefirsttypeofsuperconductorhasonlyasinglecriticalmagneticfieldstrength;thesecondtypeofsuperconductorhastwocriticalmagneticfieldstrengthvalues.Betweenthetwocriticalvalues,thematerialallowspartofthemagneticfieldtopenetratethematerial.Fromatheoreticalpointofview,asstatedintheGLtheoryinthe"TheoreticalExplanation"above,theparameterκisthecriterionfordividingtwotypesofsuperconductors.

Amongtheelementalsuperconductorsthathavebeendiscovered,thefirsttypeofsuperconductoraccountsforthemajority,andonlyvanadium,niobium,andtechnetiumbelongtothesecondtypeofsuperconductor;however,manyalloysuperconductorsandcompoundsuperconductorsbelongtothesecondtypeofsuperconductor.

(2)Accordingtotheinterpretationtheory:traditionalsuperconductors(canbeexplainedbyBCStheoryoritsinferences)andnon-traditionalsuperconductors(cannotbeexplainedbyBCStheory).

(3)Accordingtothecriticaltemperature:hightemperaturesuperconductorandlowtemperaturesuperconductor.High-temperaturesuperconductorsusuallyrefertosuperconductorswhosecriticaltemperatureishigherthanthetemperatureofliquidnitrogen(greaterthan77K),andlow-temperaturesuperconductorsusuallyrefertosuperconductorswhosecriticaltemperatureislowerthanthetemperatureofliquidnitrogen(lessthan77K).

(4)Accordingtothetypeofmaterial:elementalsuperconductors(suchasleadandmercury),alloysuperconductors(suchasniobium-titaniumalloy),oxidesuperconductors(suchasyttriumbariumcopperoxide),organicsuperconductors(suchascarbonnanoTube).

Historyofdevelopment

Mid-early20thcentury

In1911,theDutchscientistKamelin-Onnesusedliquidheliumtocoolmercury.Whenthetemperaturedroppedto4.2AtK(-268.95°C),theresistanceofmercurycompletelydisappears,andKamerincallsthisphenomenonsuperconductivity.KamerlinwontheNobelPrizein1913forthis.

In1933,MeissnerandOxenfeldscientistsdiscoveredthecompletediamagnetismofsuperconductors,whichlatercametocallthe"Meisnereffect."

FromMarch16,1954toSeptember5,1956,inordertoverifythattheresistanceofthesuperconductorwaszero,scientistsputaleadringwithatemperaturelowerthanTc=7.2Kspace,usingelectromagneticinductiontoexciteaninducedcurrentinthering.Thecurrenthasnotdecayedfortwoandahalfyears,whichshowsthatthereisnolossofelectricenergyinthering.WhenthetemperaturerisesaboveTc,theringchangesfromasuperconductingstatetoanormalstate.Theresistanceofthematerialincreasessuddenly,andtheinducedcurrentdisappearsimmediately.ThisisthefamousOnnissPersistentCurrentExperiment.

In1962,Josephson,agraduatestudentattheUniversityofCambridge,theoreticallypredictedthatelectronscouldpassthroughthethininsulatinglayerbetweentwosuperconductors.Inlessthanayear,AndersonandRowelletal.TheaboveconfirmedJosephson’sprophecy.Thisimportantdiscoveryprovidesevidenceforthemovementofelectronpairsinsuperconductors,anddeepenstheunderstandingofthenatureofsuperconductivity.TheJosephsoneffectbecamethebasisforthedetectionofweakelectromagneticsignalsandotherelectronicapplications.

Inthe1970s

In1973,asuperconductingalloy,niobium-germaniumalloy,wasdiscovered.Itscriticalsuperconductingtemperaturewas23.2K(﹣249.95℃).Thisrecordhasbeenmaintained.Nearly13years.

In1979,thesuperconductingtrainsuccessfullycarriedoutamannedfeasibilitytestontheMiyazakiLine,Japan’stestrailway,withaspeedof517kilometersperhour.

1980s

In1980,BechgaardandothersinDenmarksynthesizedthefirstorganicsuperconductor(TMTSF)2PF6.

In1986,MullerandBenozdiscoveredthataceramicmetaloxidecomposedofbarium,lanthanum,copper,andoxygen,LaBaCuO4,hashightemperaturesuperconductivityandcriticalThetemperaturecanreach35K(﹣240.15℃).Sinceceramicmetaloxidesareusuallyinsulatingmaterials,thisdiscoveryisofgreatsignificance,andMuellerandBenozwontheNobelPrizeinPhysicsin1987.Sincethen,researchonhigh-temperaturesuperconductivityhasdevelopedrapidly.

In1986,BellLaboratoriesoftheUnitedStatesdevelopedasuperconductingmaterialwithacriticalsuperconductingtemperatureof40K(-235.15℃),breakingthe"temperaturebarrier"(40K)ofliquidhydrogen.

In1987,ChineseAmericanscientist,UniversityofHoustonprofessorZhuJingwu,andChinesescientistZhaoZhongxiansuccessivelydevelopedyttrium-barium-copper-oxygenmaterials.Thecriticalsuperconductingtemperaturewasincreasedto90K(﹣185.15℃)above,breakingThe"temperaturebarrier"ofliquidnitrogen(77K).

Attheendof1987,itwasdiscoveredthatthecriticaltemperatureofthethallium-barium-calcium-copper-oxygensystemreached125K(-150.15°C).Injustoverayearfrom1986to1987,thecriticalsuperconductingtemperaturehasincreasedbynearly100K.

In1988,Hitachi,Ltd.ofJapandiscoveredthatthecriticaltemperatureofmercury-basedsuperconductingmaterialsreached135K.Underhighpressureconditions,thecriticaltemperaturecouldreach164K.

90softhe20thcentury

InMarch1991,SumitomoElectricIndustriesofJapandemonstratedtheworld'sfirstsuperconductingmagnet.

InOctober1991,JapanAtomicEnergyResearchInstituteandToshibaCorporationjointlydevelopedasuperconductingcoilfornuclearfusionreactorsmadeofniobiumandtincompounds.Thecurrentdensityofthecoilreaches40amperespersquaremillimeter,whichismorethanthreetimesthatofthepast.

In1992,asuperconductingsupercolliderbasedongiantsuperconductingmagnetswasbuiltandputintouseinTexas,USA,atacostofmorethan8.2billionU.S.dollars.

OnJanuary27,1992,builtbytheJapanShipandOceanFoundation,thefirstshipwithsuperconductingmagneticfluidpropulsion,the"Yamato"No.1,waslaunchedinKobe,Japanforseatrials.

In1996,EuropeancablegiantPirelliCableCompany,AmericanSuperconductorCompanyandSanFranciscoElectricPowerResearchInstitutejointlyproducedthefirstundergroundhigh-temperaturesuperconductingpowertransmissioncable.Thecableis6000meterslongandiswoundwithbismuth-Strontium-calcium-copper-oxygensuperconductingmaterialmadeofliquidnitrogenemptytube.

In1999,BernhardandothersoftheGermanPlanckInstitutediscoveredthattherutheniumcoppercompoundRuSr2GdCu2O8-δIthasbothsuperconductivityandferromagneticorder.Itssuperconductingcriticaltemperatureis15-40Kandferromagnetictransitiontemperatureis133-136K.Becausethecompoundhasbothsuperconductivityandferromagneticorder,ithasgreatapplicationpotentialincomputerdatastorage.

Thebeginningofthe21stcentury

OnJanuary29,2004,ajointresearchteamcomposedofscientistsfromtheAmericanInstituteofStandardsandTechnologyandtheUniversityofColoradoproposedanewformofmatter-feeYonagocondensate(fermioniccondensate),andpredictsthatitwillhelphumansmakethenextgenerationofsuperconductors.

In2006,ProfessorHideoHosonoofTokyoInstituteofTechnology,Japan,synthesizedLaFeOP,acompoundwithironasthemainbodyofsuperconducting,andpioneeredthestudyofiron-basedsuperconductors.

InSeptember2012,theUniversityofLeipziginGermanydiscoveredthatgraphiteparticlescanexhibitsuperconductivityatroomtemperature.

Researchtrends

Copper-oxygensuperconductors

Copper-oxygensuperconductorsarethefirsthigh-temperaturesuperconductorsdiscovered.ThebariumsynthesizedbyMullerandBenozinthe1980sThelanthanum-copper-oxygenserieshigh-temperaturesuperconductorsandtheyttrium-barium-copper-oxygenserieshigh-temperaturesuperconductorssynthesizedbyZhuJingwuandZhaoZhongxianallbelongtothiscategory.

Copper-oxygensuperconductorsinclude90Krareearthseries,110Kbismuthseries,125Kthalliumseries,and135Kmercuryseriessuperconductors.Theyallcontaincopperandoxygen,sotheyarecalledcopper-oxygensuperconductors.Thecopper-oxygensuperconductorhasasimilarlayeredcrystallinestructure,inwhichthecopper-oxygenlayerisasuperconductinglayer.

Theresearchoncopper-oxygensuperconductorspresentsthefollowingtrends:First,copper-oxygensuperconductorsarerelativelymature.Forexample,devicesmadeofthallium-barium-calcium-copper-oxygensuperconductingfilmshavebeenusedinmobilephones.Transmissiontowertoincreasecapacityandreducedisconnectionandexternalinterference.Secondly,thebasicresearchofcopper-oxygensuperconductorsisatabottleneckstage,andthetransitiontemperaturehasnotbeenabletoexceed164K.Third,theresearchonthemechanismofcopper-oxygensuperconductorshasmadeprogress.Forexample,in2002,scientistsinGermany,France,andRussiausedneutronscatteringtechnologytocreateasinglecopper-oxygenlayerTl2Ba2CuO6+δobservedmagneticresonance,whichishelpfultotheinvestigationofthemechanismofcopperoxidesuperconductors.

Iron-basedsuperconductors

Sincethediscoveryofiron-basedsuperconductorsin2006,therehasbeenadeepeningofiron-basedsuperconductors.Themoreprominentresultsare:In2008,JapanesescientistHideoHononodiscovereddopingF’sLaFeOPsuperconductorhasacriticaltemperatureof26K;in2008,ChinesescientistsZhaoZhongxian,ChenXianhui,WangNanlin,WenHaihu,andFangZhongdiscoveredSmFeAs1-xFxwithacriticaltemperatureof43K.SuperconductorsandReFeAs1-xFxsuperconductorswithacriticaltemperatureof55KbrokethroughtheMcMillanlimittemperatureof40Kforthefirsttimeinthefieldofiron-basedsuperconductors.

Iron-basedsuperconductorshaveattractedattentionfortworeasons:First,Feionsaremagneticions,whichbreakstheviewthatmagneticionsarenotconducivetosuperconductivity,andprovidesawaytoexplorenewsuperconductors.;Second,similartocopper-oxygensuperconductors,iron-basedsuperconductorsalsohavestrongelectron-spininteractions,whichareofreferencevalueforprobingthemechanismofhigh-temperaturesuperconductivity.

MagnesiumBorideSuperconductor

InJanuary2001,ProfessorJ.AkimitsufromAoyamaGakuinUniversityinJapanandothersdiscoveredforthefirsttimethatMgB2hassuperconductivity.Thecriticaltemperatureisabout39K.

AlthoughMgB2hasalowercriticaltemperature,itstillhasmanyadvantagescomparedwithcopper-oxygensuperconductorsandiron-basedsuperconductors,including:simplestructureandeasypreparation;sourceofrawmaterialsWiderange,lowcost;easytoprocess.Inparticular,theeaseofprocessinghasbecomeanimportantadvantageofMgB2.Becausethecopper-oxygensuperconductorwithhighcriticaltemperatureisessentiallyaceramicmaterial,thehardnessoftheceramicmaterialislargeandtheprocessingisdifficult,whichhasbecomeafactorrestrictingthedevelopmentofthecopper-oxygensuperconductor.MgB2superconductorscanmakeupforthisdeficiency.

Applications

Theapplicationsofsuperconductorscanbedividedintothreecategories:strongcurrentapplications,weakcurrentapplicationsanddiamagneticapplications.Strongcurrentapplicationsarehighcurrentapplications,includingsuperconductingpowergeneration,powertransmissionandenergystorage;weakcurrentapplicationsareelectronicsapplications,includingsuperconductingcomputers,superconductingantennas,superconductingmicrowavedevices,etc.;diamagneticapplicationsmainlyincludemaglevtrainsandthermonucleiFusionreactor,etc.

Strongcurrentapplication

Superconductinggenerator:Superconductinggeneratorhastwomeanings.Onemeaningistoreplacethecopperwindingsofordinarygeneratorswithsuperconductorwindingstoimprovecurrentdensityandmagneticfieldstrength.Ithastheadvantagesoflargegeneratingcapacity,smallsize,lightweight,smallreactanceandhighefficiency.Anothermeaningreferstothesuperconductingmagneticfluidgenerator.Themagneticfluidgeneratorhastheadvantagesofhighefficiencyandlargepowergenerationcapacity.However,thetraditionalmagnetwillproducealotoflossduringthepowergenerationprocess,whilethesuperconductingmagnetitselfhaslowlossandcanbeMakeupforthisshortcoming.

Superconductingpowertransmission:Superconductingwiresandsuperconductingtransformersmadeofsuperconductingmaterialscantransmitelectricitytousersalmostwithoutloss.Accordingtostatistics,about15%oftheelectricityislostonthetransmissionlinewithcopperoraluminumwires.InChinaalone,theannualelectricitylossismorethan100billionkWh.Ifitischangedtosuperconductingpowertransmission,theenergysavedisequivalenttotheconstructionofdozensoflarge-scalepowerplants.

Lightcurrentapplications

Superconductingcomputers:High-speedcomputersrequiredenselyarrangedcomponentsandconnectinglinesonintegratedcircuitchips,butdenselyarrangedcircuitswillgeneratealotofheatduringoperation,andHeatdissipationisaproblemfacedbyVLSI.Theverylargescaleintegratedcircuitinthesuperconductingcomputer,theinterconnectionlinebetweenitscomponentsismadeofsuperconductingdeviceswithclosetozeroresistanceandultra-microheating,thereisnoheatdissipationproblem,andthecomputingspeedofthecomputerisgreatlyimproved.Inaddition,scientistsarestudyingtheuseofsemiconductorsandsuperconductorstomaketransistors,andevencompletelyusesuperconductorstomaketransistors.

Diamagneticapplications

Superconductingmagneticlevitationtrain:Usingthediamagnetismofsuperconductingmaterials,placethesuperconductingmaterialontopofapermanentmagnet,becausethemagneticfieldlinesofthemagnetcannotpassthroughthesuperconductor,Therewillbearepulsiveforcebetweenthemagnetandthesuperconductor,causingthesuperconductortofloatabovethemagnet.Thiskindofmagneticlevitationeffectcanbeusedtomakehigh-speedsuperconductingmagneticlevitationtrains.

Nuclearfusionreactor"magneticenclosure":Duringthenuclearfusionreaction,theinternaltemperatureisashighas100to200milliondegreesCelsius,andthereisnoconventionalmaterialthatcancontainthesesubstances.Thestrongmagneticfieldgeneratedbythesuperconductorcanbeusedasa"magneticenclosure"toencloseandconfinetheultra-hightemperatureplasmainthethermonuclearreactor,andthenslowlyreleaseit,therebymakingcontrollednuclearfusionenergyapromisingnewenergysourceinthe21stcentury.

Criticaltemperature

Criticaltemperatureofsuperconductingmaterials

SummarytableofcriticaltemperatureTcofsuperconductingmaterials

Materialssuperconductor

Symbols

Tc(K)

NumberofCu-Oplanesintheunitcell

Structure

YBa2Cu3O7

123

92

2

orthogonalsystem

Bi2Sr2CuO6

Bi-2201

20

1

Tetragonalcrystalsystem

Bi2Sr2CaCu2O8

Bi-2212

85

2

Tetragonalcrystalsystem

Bi2Sr2Ca2Cu3O6

Bi-2223

110

3

Tetragonalcrystalsystem

Tl2Ba2CuO6

Tl-2201

80

1

Tetragonalcrystalsystem

Tl2Ba2CaCu2O8

Tl-2212

108

2

tetragonalcrystalsystem

Tl2Ba2Ca2Cu3O10

Tl-2223

125

3

Tetragonalcrystalsystem

TlBa2Ca3Cu4O11

Tl-1234

122

4

tetragonalcrystalsystem

HgBa2CuO4

Hg-1201

94

1

tetragonalcrystalsystem

HgBa2CaCu2O6

Hg-1212

128

2

Tetragonalcrystalsystem

HgBa2Ca2Cu3O8

Hg-1223

134

3

Tetragonalcrystalsystem

Theoreticalprogress

AmericanphysicistsJohnBarding,LeonCooper,andJohnSchrieverputforwardtheBCStheoryandpointedoutthekeyroleofelectro-acousticcoupling,whichexplainedthelow-temperaturesuperconductivitymoresatisfactorily.Theoreticalresearchonhigh-temperaturesuperconductivityisstillinprogress.

InSeptember2012,researchersattheUniversityofLeipziginGermanyannouncedaprogress:graphiteparticlescanexhibitsuperconductivityatroomtemperature.Theresearchersimmersedthegraphitepowderinwater,filtereditout,andplaceditinamagneticfield.Asaresult,asmallportion(approximately0.01%)ofthesamplesshoweddiamagnetism,anddiamagnetismisoneofthehallmarkcharacteristicsofsuperconductingmaterials.Althoughtherearefewgraphiteparticlesexhibitingsuperconductivity,thisdiscoveryisstillofgreatsignificance.Sofar,superconductorscanonlyfunctionattemperaturesbelow-70°C.Ifacheapandeasilyavailablemateriallikegraphitepowdercanreallyachievesuperconductivityatroomtemperature,itwilltriggeranewmodernindustrialrevolution.

Purpose

SuperconductingmagnetscanbeusedtomakeACsuperconductinggenerators,magneticfluidgeneratorsandsuperconductingtransmissionlines.Thesuperconductingquantuminterferometer(SQUID)hasbeenindustrialized.Inaddition,NbTialloyandNb3Sn,whicharethemainrepresentativesoflow-temperaturesuperconductingmaterials,aremainlyusedinMRI(magneticresonanceimaging)inthemedicalfieldinthecommercialfield.Asascientificresearchfield,ithasbeenappliedtothelarge-scaleEuropeanprojectLHCprojecttohelphumansseekscientificissuessuchastheoriginoftheuniverse.

Generatingamagneticfield

Whenaconventionalconductorisusedasamagnet,itneedstogenerateasteady-statestrongmagneticfieldofmorethan100,000Gauss,whichrequires3.5megawattsofelectricpowerandalargeamountofTheinvestmentincoolingwaterishuge;andthesuperconductingmaterialhaszeroresistanceanddiamagnetisminthesuperconductingstate,soitonlyneedstoconsumeverylittleelectricenergytoobtainsuchalargesteady-statestrongmagneticfield.

This article is from the network, does not represent the position of this station. Please indicate the origin of reprint
TOP